Eukaryotic DNA damage tolerance and translesion syntheses through covalent modifications of PCNA

被引:159
作者
Andersen, Parker L. [1 ]
Xu, Fang [2 ]
Xiao, Wei [1 ]
机构
[1] Univ Saskatchewan, Dept Microbiol & Immunol, Saskatoon, SK S7N 5E5, Canada
[2] Ningxia Med Coll, Dept Biol, Ningxia 750004, Peoples R China
关键词
DNA damage tolerance; translesion synthesis; Y-family polymerase; ubiquitination; sumoylation; PCNA;
D O I
10.1038/cr.2007.114
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In addition to well-defined DNA repair pathways, all living organisms have evolved mechanisms to avoid cell death caused by replication fork collapse at a site where replication is blocked due to disruptive covalent modifications of DNA. The term DNA damage tolerance (DDT) has been employed loosely to include a collection of mechanisms by which cells survive replication-blocking lesions with or without associated genomic instability. Recent genetic analyses indicate that DDT in eukaryotes, from yeast to human, consists of two parallel pathways with one being error-free and another highly mutagenic. Interestingly, in budding yeast, these two pathways are mediated by sequential modifications of the proliferating cell nuclear antigen (PCNA) by two ubiquitination comptexes Rad6-Rad18 and Mms2-Ubcl3-Rad5. Damage-induced monoubiquitination of PCNA by Rad6-Rad18 promotes translesion synthesis (TLS) with increased mutagenesis, while subsequent polyubiquitination of PCNA at the same K164 residue by Mms2-Ubcl3-Rad5 promotes error-free lesion bypass. Data obtained from recent studies suggest that the above mechanisms are conserved in higher eukaryotes. In particular, mammals contain multiple specialized TLS polymerases. Defects in one of the TLS polymerases have been linked to genomic instability and cancer.
引用
收藏
页码:162 / 173
页数:12
相关论文
共 150 条
[1]   RADH, A GENE OF SACCHAROMYCES-CEREVISIAE ENCODING A PUTATIVE DNA HELICASE INVOLVED IN DNA-REPAIR - CHARACTERISTICS OF RADH MUTANTS AND SEQUENCE OF THE GENE [J].
ABOUSSEKHRA, A ;
CHANET, R ;
ZGAGA, Z ;
CASSIERCHAUVAT, C ;
HEUDE, M ;
FABRE, F .
NUCLEIC ACIDS RESEARCH, 1989, 17 (18) :7211-7219
[2]   Complex formation of yeast Rev1 and Rev7 proteins: a novel role for the polymerase-associated domain [J].
Acharya, N ;
Haracska, L ;
Johnson, RE ;
Unk, I ;
Prakash, S ;
Prakash, L .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (21) :9734-9740
[3]   Mutations in the ubiquitin binding UBZ motif of DNA polymerase η do not impair its function in translesion synthesis during replication [J].
Acharya, Narottam ;
Brahma, Amrita ;
Haracska, Lajos ;
Prakash, Louise ;
Prakash, Satya .
MOLECULAR AND CELLULAR BIOLOGY, 2007, 27 (20) :7266-7272
[4]  
AGUILERA A, 1988, GENETICS, V119, P779
[5]   The RADS gene product involved in the avoidance of non-homologous end-joining of DNA double strand breaks in the yeast Saccharomyces cerevisiae [J].
Ahne, F ;
Jha, B ;
EckardtSchupp, F .
NUCLEIC ACIDS RESEARCH, 1997, 25 (04) :743-749
[6]   Distinct regulation of Ubc13 functions by the two ubiquitin-conjugating enzyme variants Mms2 and Uev1A [J].
Andersen, PL ;
Zhou, HL ;
Pastushok, L ;
Moraes, T ;
McKenna, S ;
Ziola, B ;
Ellison, MJ ;
Dixit, VM ;
Xiao, W .
JOURNAL OF CELL BIOLOGY, 2005, 170 (05) :745-755
[7]   SPECIFIC COMPLEX-FORMATION BETWEEN YEAST RAD6 AND RAD18 PROTEINS - A POTENTIAL MECHANISM FOR TARGETING RAD6 UBIQUITIN-CONJUGATING ACTIVITY TO DNA-DAMAGE SITES [J].
BAILLY, V ;
LAMB, J ;
SUNG, P ;
PRAKASH, S ;
PRAKASH, L .
GENES & DEVELOPMENT, 1994, 8 (07) :811-820
[8]   Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities [J].
Bailly, V ;
Lauder, S ;
Prakash, S ;
Prakash, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (37) :23360-23365
[9]   Regulation of alternative replication bypass pathways at stalled replication forks and its effects on genome stability: a yeast model [J].
Barbour, L ;
Xiao, W .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2003, 532 (1-2) :137-155
[10]   Structure determination of the small ubiquitin-related modifier SUMO-1 [J].
Bayer, P ;
Arndt, A ;
Metzger, S ;
Mahajan, R ;
Melchior, F ;
Jaenicke, R ;
Becker, J .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 280 (02) :275-286