Quantum reversibility: Is there an echo?

被引:19
作者
Hiller, M
Kottos, T
Cohen, D
Geisel, T
机构
[1] Univ Gottingen, Fak Phys, Max Planck Inst Stromungsforsch, D-37073 Gottingen, Germany
[2] Ben Gurion Univ Negev, Dept Phys, IL-84105 Beer Sheva, Israel
关键词
D O I
10.1103/PhysRevLett.92.010402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the possibility to undo the quantum mechanical evolution in a time reversal experiment. The naive expectation, as reflected in the common terminology ("Loschmidt echo"), is that maximum compensation results if the reversed dynamics extends to the same time as the forward evolution. We challenge this belief and demonstrate that the time t(r) for maximum return probability is in general shorter. We find that t(r) depends on lambda=epsilon(evol)/epsilon(prep), being the ratio of the error in setting the parameters (fields) for the time-reversed evolution to the perturbation which is involved in the preparation process. Our results should be observable in spin-echo experiments where the dynamical irreversibility of quantum phases is measured.
引用
收藏
页数:4
相关论文
共 40 条
[1]   Quantum-classical correspondence in perturbed chaotic systems [J].
Benenti, G ;
Casati, G .
PHYSICAL REVIEW E, 2002, 65 (06)
[2]   BAND-RANDOM-MATRIX MODEL FOR QUANTUM LOCALIZATION IN CONSERVATIVE-SYSTEMS [J].
CASATI, G ;
CHIRIKOV, BV ;
GUARNERI, I ;
IZRAILEV, FM .
PHYSICAL REVIEW E, 1993, 48 (03) :R1613-R1616
[3]   Quantum ergodicity and localization in conservative systems: The Wigner band random matrix model [J].
Casati, G ;
Chirikov, BV ;
Guarneri, I ;
Izrailev, FM .
PHYSICS LETTERS A, 1996, 223 (06) :430-435
[4]   A uniform approximation for the fidelity in chaotic systems [J].
Cerruti, NR ;
Tomsovic, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12) :3451-3465
[5]   Sensitivity of wave field evolution and manifold stability in chaotic systems [J].
Cerruti, NR ;
Tomsovic, S .
PHYSICAL REVIEW LETTERS, 2002, 88 (05) :4-541034
[6]   Unification of perturbation theory, random matrix theory, and semiclassical considerations in the study of parametrically dependent eigenstates [J].
Cohen, D ;
Heller, EJ .
PHYSICAL REVIEW LETTERS, 2000, 84 (13) :2841-2844
[7]   Dephasing due to the interaction with chaotic degrees of freedom [J].
Cohen, D .
PHYSICAL REVIEW E, 2002, 65 (02) :1-026218
[8]   Parametric dependent Hamiltonians, wave functions, random matrix theory, and quantal-classical correspondence [J].
Cohen, D ;
Kottos, T .
PHYSICAL REVIEW E, 2001, 63 (03)
[9]  
COHEN D, CONDMAT0302319
[10]   Measuring the Lyapunov exponent using quantum mechanics [J].
Cucchietti, F.M. ;
Lewenkopf, C.H. ;
Mucciolo, E.R. ;
Pastawski, H.M. ;
Vallejos, R.O. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (04) :1-046209