Identification of amino acid residues crucial for chemokine receptor dimerization

被引:146
作者
Hernanz-Falcón, P
Rodríguez-Frade, JM
Serrano, A
Juan, D
del Sol, A
Soriano, SF
Roncal, F
Gómez, L
Valencia, A
Martínez-A, C
Mellado, M
机构
[1] Natl Biotechnol Ctr, Dept Immunol & Oncol, E-28049 Madrid, Spain
[2] Natl Biotechnol Ctr, Prot Design Grp, E-28049 Madrid, Spain
关键词
D O I
10.1038/ni1027
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Chemokines coordinate leukocyte trafficking by promoting oligomerization and signaling by G protein-coupled receptors; however, it is not known which amino acid residues of the receptors participate in this process. Bioinformatic analysis predicted that Ile52 in transmembrane region-1 (TM1) and Val150 in TM4 of the chemokine receptor CCR5 are key residues in the interaction surface between CCR5 molecules. Mutation of these residues generated nonfunctional receptors that could not dimerize or trigger signaling. In vitro and in vivo studies in human cell lines and primary T cells showed that synthetic peptides containing these residues blocked responses induced by the CCR5 ligand CCL5. Fluorescence resonance energy transfer showed the presence of preformed, ligand-stabilized chemokine receptor oligomers. This is the first description of the residues involved in chemokine receptor dimerization, and indicates a potential target for the modification of chemokine responses.
引用
收藏
页码:216 / 223
页数:8
相关论文
共 54 条
[1]   Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET) [J].
Angers, S ;
Salahpour, A ;
Joly, E ;
Hilairet, S ;
Chelsky, D ;
Dennis, M ;
Bouvier, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3684-3689
[2]   Dimerization: An emerging concept for G protein-coupled receptor ontogeny and function [J].
Angers, S ;
Salahpour, A ;
Bouvier, M .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2002, 42 :409-435
[3]   Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor [J].
Babcock, GJ ;
Farzan, M ;
Sodroski, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (05) :3378-3385
[4]   Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell [J].
Bastiaens, PIH ;
Squire, A .
TRENDS IN CELL BIOLOGY, 1999, 9 (02) :48-52
[5]   Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5Δ32 [J].
Benkirane, M ;
Jin, DY ;
Chun, RF ;
Koup, RA ;
Jeang, KT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (49) :30603-30606
[6]   Multiple active states and oligomerization of CCR5 revealed by functional properties of monoclonal antibodies [J].
Blanpain, C ;
Vanderwinden, JM ;
Cihak, J ;
Wittamer, V ;
Le Poul, E ;
Issafras, H ;
Stangassinger, M ;
Vassart, G ;
Marullo, S ;
Schlöndorff, D ;
Parmentier, M ;
Mack, M .
MOLECULAR BIOLOGY OF THE CELL, 2002, 13 (02) :723-737
[7]   A METHOD TO PREDICT FUNCTIONAL RESIDUES IN PROTEINS [J].
CASARI, G ;
SANDER, C ;
VALENCIA, A .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (02) :171-178
[8]   STIMULATION OF THE PHOSPHATIDYL-INOSITOL PATHWAY CAN INDUCE T-CELL ACTIVATION [J].
DESAI, DM ;
NEWTON, ME ;
KADLECEK, T ;
WEISS, A .
NATURE, 1990, 348 (6296) :66-69
[9]   Heterodimerization of G-protein-coupled receptors: pharmacology, signaling and trafficking [J].
Devi, LA .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2001, 22 (10) :532-537
[10]   A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5 [J].
Dragic, T ;
Trkola, A ;
Thompson, DAD ;
Cormier, EG ;
Kajumo, FA ;
Maxwell, E ;
Lin, SW ;
Ying, WW ;
Smith, SO ;
Sakmar, TP ;
Moore, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (10) :5639-5644