Presynaptic depression of glutamatergic synaptic transmission by D1-like dopamine receptor activation in the avian basal ganglia

被引:55
作者
Ding, L
Perkel, DJ
Farries, MA
机构
[1] Univ Washington, Dept Biol, Seattle, WA 98195 USA
[2] Univ Washington, Dept Otolaryngol, Seattle, WA 98195 USA
[3] Univ Penn, Dept Neurosci, Philadelphia, PA 19104 USA
关键词
dopamine; basal ganglia; songbird; synaptic transmission; area X; vocal learning;
D O I
10.1523/JNEUROSCI.23-14-06086.2003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Vocal behavior in songbirds exemplifies a rich integration of motor, cognitive, and social functions that are shared among vertebrates. As a part of the underlying neural substrate, the song system, the anterior forebrain pathway (AFP) is required for song learning and maintenance. The AFP resembles the mammalian basal ganglia - thalamocortical loop in its macroscopic organization, neuronal intrinsic properties, and microcircuitry. Area X, the first station in the AFP, is a part of the basal ganglia essential for vocal learning. It receives glutamatergic inputs from pallial structures and sends GABAergic outputs to thalamic structures. It also receives dense dopaminergic innervation from the midbrain. The role of this innervation is essentially unknown. Here we provide evidence that dopamine (DA) can modulate the glutamatergic inputs to spiny neurons in area X. In whole-cell voltage-clamp recordings from neurons in brain slices of adult zebra finches, we found that activation of D1-like DA receptors depresses ionotropic glutamatergic synaptic current in area X spiny neurons. This effect is mediated by a presynaptic site of action, mimicked by activation of adenylyl cyclase, and blocked by protein kinase A inhibitor and an adenosine A1 receptor antagonist. These results suggest that, in addition to altering the input - output function of spiny neurons by modulating their excitability, as we have shown previously, DA can directly influence the excitatory inputs to these neurons as well. Thus, DA can exert fine control over information processing through spiny neurons in area X, the dynamics of the AFP output, and ultimately song learning and maintenance.
引用
收藏
页码:6086 / 6095
页数:10
相关论文
共 48 条
[1]   WHOLE CELL RECORDING FROM NEURONS IN SLICES OF REPTILIAN AND MAMMALIAN CEREBRAL-CORTEX [J].
BLANTON, MG ;
LOTURCO, JJ ;
KRIEGSTEIN, AR .
JOURNAL OF NEUROSCIENCE METHODS, 1989, 30 (03) :203-210
[2]   A common mechanism mediates long-term changes in synaptic transmission after chronic cocaine and morphine [J].
Bonci, A ;
Williams, JT .
NEURON, 1996, 16 (03) :631-639
[3]   FOREBRAIN LESIONS DISRUPT DEVELOPMENT BUT NOT MAINTENANCE OF SONG IN PASSERINE BIRDS [J].
BOTTJER, SW ;
MIESNER, EA ;
ARNOLD, AP .
SCIENCE, 1984, 224 (4651) :901-903
[4]  
Bottjer SW, 1997, J NEUROBIOL, V33, P602, DOI 10.1002/(SICI)1097-4695(19971105)33:5<602::AID-NEU8>3.0.CO
[5]  
2-8
[6]   THE DISTRIBUTION OF TYROSINE-HYDROXYLASE IMMUNOREACTIVITY IN THE BRAINS OF MALE AND FEMALE ZEBRA FINCHES [J].
BOTTJER, SW .
JOURNAL OF NEUROBIOLOGY, 1993, 24 (01) :51-69
[7]   AXONAL CONNECTIONS OF A FOREBRAIN NUCLEUS INVOLVED WITH VOCAL LEARNING IN ZEBRA FINCHES [J].
BOTTJER, SW ;
HALSEMA, KA ;
BROWN, SA ;
MIESNER, EA .
JOURNAL OF COMPARATIVE NEUROLOGY, 1989, 279 (02) :312-326
[8]   Interruption of a basal ganglia-forebrain circuit prevents plasticity of learned vocalizations [J].
Brainard, MS ;
Doupe, AJ .
NATURE, 2000, 404 (6779) :762-766
[9]   Sensory and cognitive functions of the basal ganglia [J].
Brown, LL ;
Schneider, JS ;
Lidsky, TI .
CURRENT OPINION IN NEUROBIOLOGY, 1997, 7 (02) :157-163
[10]   NEUROMODULATORY ACTIONS OF DOPAMINE IN THE NEOSTRIATUM ARE DEPENDENT UPON THE EXCITATORY AMINO-ACID RECEPTOR SUBTYPES ACTIVATED [J].
CEPEDA, C ;
BUCHWALD, NA ;
LEVINE, MS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (20) :9576-9580