Homoclinic bifurcation in an SIQR model for childhood diseases

被引:91
作者
Wu, LI [1 ]
Feng, ZL [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
D O I
10.1006/jdeq.2000.3882
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a system of ODEs which describes the transmission dynamics of childhood diseases. A center manifold reduction at a bifurcation point has the normal form x' = y, y' = axy + bx(2)y + O(4), indicating a bifurcation of codimension greater than two. A three-parameter unfolding of the normal form is studied to capture possible complex dynamics of the original system which is subjected to certain constraints on the state space due to biological considerations. It is shown that the perturbed system produces homoclinic bifurcation. (C) 2000 Academic Press.
引用
收藏
页码:150 / 167
页数:18
相关论文
共 8 条
[1]  
[Anonymous], LECT NOTES MATH
[2]  
Bogdanov R. I., 1975, FUNCTIONAL ANAL ITS, V9, P144, DOI DOI 10.1007/BF01075453
[3]  
Chow S. -N., 1994, NORMAL FORMS BIFURCA
[4]  
Doedel E.J., 1981, CONGRESSUS NUMERANTI, V30, P25
[5]   RECURRENT OUTBREAKS OF CHILDHOOD DISEASES REVISITED - THE IMPACT OF ISOLATION [J].
FENG, Z ;
THIEME, HR .
MATHEMATICAL BIOSCIENCES, 1995, 128 (1-2) :93-130
[6]  
Guckenheimer J., 1983, APPL MATH SCI, V42, DOI DOI 10.1115/1.3167759
[7]  
Perko L., 1996, TEXTS APPL MATH
[8]  
Wiggins S., 1990, TEXTS APPL MATH, V2nd ed.