Imino sugar inhibitors for treating the lysosomal glycosphingolipidoses

被引:184
作者
Butters, TD [1 ]
Dwek, RA [1 ]
Platt, FM [1 ]
机构
[1] Univ Oxford, Oxford Glycobiol Inst, Dept Biochem, Oxford OX1 3QU, England
关键词
enzyme inhibitor; Gaucher disease; glycosphingolipid; lysosomal storage diseases; novel therapeutics;
D O I
10.1093/glycob/cwi076
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The inherited metabolic disorders of glycosphingolipid (GSL) metabolism are a relatively rare group of diseases that have diverse and often neurodegenerative phenotypes. Typically, a deficiency in catabolic enzyme activity leads to lysosomal storage of GSL substrates and in many diseases, several other glycoconjugates. A novel generic approach to treating these diseases has been termed substrate reduction therapy (SRT), and the discovery and development of N-alkylated imino sugars as effective and approved drugs is discussed. An understanding of the molecular mechanism for the inhibition of the key enzyme in GSL biosynthesis, ceramide glucosyltransferase (CGT) by N-alkylated imino sugars, has also lead to compound design for improvements to inhibitory potency, bioavailability, enzyme selectivity, and biological safety. Following a successful clinical evaluation of one compound, N-butyl-deoxynojirimycin [(NB-DNJ), miglustat, Zavesca], for treating type I Gaucher disease, issues regarding the significance of side effects and CNS access have been addressed as exposure of drug to patients has increased. An alternative experimental approach to treat specific glycosphingolipid (GSL) lysosomal storage diseases is to use imino sugars as molecular chaperons that assist protein folding and stability of mutant enzymes. The principles of chaperon-mediated therapy (CMT) are described, and the potential efficacy and preclinical status of imino sugars is compared with substrate reduction therapy (SRT). The increasing use of imino sugars for clinical evaluation of a group of storage diseases that are complex and often intractable disorders to treat has considerable benefit. This is particularly so given the ability of small molecules to be orally available, penetrate the central nervous system (CNS), and have well-characterized biological and pharmacological properties.
引用
收藏
页码:R43 / R52
页数:10
相关论文
共 83 条
[1]   Reduction of globotriaosylceramide in Fabry disease mice by substrate deprivation [J].
Abe, A ;
Gregory, S ;
Lee, L ;
Killen, PD ;
Brady, RO ;
Kulkarni, A ;
Shayman, JA .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 105 (11) :1563-1571
[2]   Lubricating cell signaling pathways with gangliosides [J].
Allende, ML ;
Proia, RL .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2002, 12 (05) :587-592
[3]   Improved outcome of N-butyldeoxygalactonojirimycin-mediated substrate reduction therapy in a mouse model of Sandhoff disease [J].
Andersson, U ;
Smith, D ;
Jeyakumar, M ;
Butters, TD ;
Borja, MC ;
Dwek, RA ;
Platt, FM .
NEUROBIOLOGY OF DISEASE, 2004, 16 (03) :506-515
[4]   N-butyldeoxygalactonojirimycin:: A more selective inhibitor of glycosphingolipid biosynthesis than N-butyldeoxynojirimycin, in vitro and in vivo [J].
Andersson, U ;
Butters, TD ;
Dwek, RA ;
Platt, FM .
BIOCHEMICAL PHARMACOLOGY, 2000, 59 (07) :821-829
[5]   In vitro inhibition and intracellular enhancement of lysosomal α-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives [J].
Asano, N ;
Ishii, S ;
Kizu, H ;
Ikeda, K ;
Yasuda, K ;
Kato, A ;
Martin, OR ;
Fan, JQ .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (13) :4179-4186
[6]   Treatment of chronic hepadnavirus infection in a woodchuck animal model with an inhibitor of protein folding and trafficking [J].
Block, TM ;
Lu, XY ;
Mehta, AS ;
Blumberg, BS ;
Tennant, B ;
Ebling, M ;
Korba, B ;
Lansky, DM ;
Jacob, GS ;
Dwek, RA .
NATURE MEDICINE, 1998, 4 (05) :610-614
[7]   Design and synthesis of iminosugar-based inhibitors of glucosylceramide synthase: the search for new therapeutic agents against Gaucher disease [J].
Boucheron, C ;
Desvergnes, V ;
Compain, P ;
Martin, OR ;
Lavi, A ;
Mackeen, M ;
Wormald, M ;
Dwek, R ;
Butters, TD .
TETRAHEDRON-ASYMMETRY, 2005, 16 (10) :1747-1756
[8]   Enzyme replacement therapy: conception, chaos and culmination [J].
Brady, RO .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 2003, 358 (1433) :915-919
[9]   Molecular requirements of imino sugars for the selective control of N-linked glycosylation and glycosphingolipid biosynthesis [J].
Butters, TD ;
van den Broek, LAGM ;
Fleet, GWJ ;
Krulle, TM ;
Wormald, MR ;
Dwek, RA ;
Platt, FM .
TETRAHEDRON-ASYMMETRY, 2000, 11 (01) :113-124
[10]  
Butters TD, 2003, ADV EXP MED BIOL, V535, P219