Nitric oxide synthase inhibitors, 7-nitro indazole and nitro(G)-L-arginine methyl ester, dose dependently reduce the threshold for isoflurane anesthesia

被引:68
作者
Pajewski, TN
DiFazio, CA
Moscicki, JC
Johns, RA
机构
[1] Department of Anesthesiology, Univ. of Virginia Hlth. Sci. Center, Charlottesville, VA 22906-0010
关键词
anesthetics; volatile; isoflurane; nitric oxide; nitric oxide synthase inhibitors; nitro(G)-L-arginine methyl ester; 7-nitro indazole; potency; minimum alveolar concentration;
D O I
10.1097/00000542-199611000-00020
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
Background: Nitric oxide (NO), a recognized cell messenger for activating soluble guanylate cyclase, is produced by the enzyme NO synthase in a wide variety of tissues, including vascular endothelium and the central nervous system. The authors previously reported the possible involvement of the NO pathway in the anesthetic state by showing that a specific NO synthase inhibitor, nitro(G)-L-arginine methyl ester (L-NAME), dose dependently and reversibly decreases the minimum alveolar concentration (MAC) for halothane anesthesia. The availability of a structurally distinct inhibitor selective for the neuronal isoform of NO synthase, 7-nitro indazole (7-NI), allowed for the possibility of dissociating the central nervous system effects of neuronal NO synthase inhibition from the cardiovascular effects of endothelial NO synthase inhibition. Methods: The effect of two structurally distinct inhibitors of NO synthase, L-NAME and 7-NI, on the MAC of isoflurane was investigated in Sprague-Dawley rats while concurrently monitoring the animals' arterial blood pressure and heart rate. L-NAME (1 to 30 mg/kg given intravenously, dissolved in 0.9% saline) and 7-NI (20 to 1,000 mg/kg given intraperitoneally, dissolved in arachis oil) were administered after determining control MAC and 30 min before determining MAC in the presence of NO synthase inhibitor. Results: L-NAME and 7-NI caused a dose-dependent decrease from isoflurane control MAC (maximal effect: 35.5 +/- 2.5% and 43.0 +/- 1.7%, respectively) with a ceiling effect observed for both NO synthase inhibitors (above 10 mg/kg and 120 mg/kg, respectively). L-NAME administration significantly increased systolic and diastolic blood pressures (maximal effect: 39.9 +/- 2.2% and 64.3 +/- 4.0%, respectively), which were not accompanied by any changes in heart rate. 7-NI administration resulted In no changes in blood pressure and a small but clinically insignificant decrease in heart rate. Conclusions: Inhibition of the NO synthase pathway decreased the MAC for isoflurane, which suggests that inhibition of the NO pathway decreases the level of consciousness and augments sedation, analgesia, and anesthesia. The MAC reduction by five structurally distinct NO synthase inhibitors supports that this is a specific effect on NO synthase. Furthermore, the action of the neuronal NO synthase inhibitor 7-NI supports an effect selective for neuronal NO synthase and also avoids the hypertensive response of generalized NO synthase inhibitors.
引用
收藏
页码:1111 / 1119
页数:9
相关论文
共 53 条
[1]  
ADACHI T, 1994, ANESTH ANALG, V78, P1154
[2]   EXAGGERATED ANESTHETIC REQUIREMENTS IN THE PREFERENTIALLY ANESTHETIZED BRAIN [J].
ANTOGNINI, JF ;
SCHWARTZ, K .
ANESTHESIOLOGY, 1993, 79 (06) :1244-1249
[3]   NITRIC-OXIDE MEDIATES GLUTAMATE-LINKED ENHANCEMENT OF CGMP LEVELS IN THE CEREBELLUM [J].
BREDT, DS ;
SNYDER, SH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (22) :9030-9033
[4]   LOCALIZATION OF NITRIC-OXIDE SYNTHASE INDICATING A NEURAL ROLE FOR NITRIC-OXIDE [J].
BREDT, DS ;
HWANG, PM ;
SNYDER, SH .
NATURE, 1990, 347 (6295) :768-770
[5]   ISOFLURANE DOES NOT VASODILATE RAT THORACIC AORTIC RINGS BY ENDOTHELIUM-DERIVED RELAXING FACTOR OR OTHER CYCLIC-GMP MEDIATED MECHANISMS [J].
BRENDEL, JK ;
JOHNS, RA .
ANESTHESIOLOGY, 1992, 77 (01) :126-131
[7]   MINIMUM ALVEOLAR ANESTHETIC CONCENTRATION - A STANDARD OF ANESTHETIC POTENCY [J].
EGER, EI ;
SAIDMAN, LJ ;
BRANDSTATER, B .
ANESTHESIOLOGY, 1965, 26 (6P1) :756-+
[8]   REGIONAL DISTRIBUTION OF EDRF NO-SYNTHESIZING ENZYME(S) IN RAT-BRAIN [J].
FORSTERMANN, U ;
GORSKY, LD ;
POLLOCK, JS ;
SCHMIDT, HHHW ;
HELLER, M ;
MURAD, F .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1990, 168 (02) :727-732
[9]   THE OBLIGATORY ROLE OF ENDOTHELIAL-CELLS IN THE RELAXATION OF ARTERIAL SMOOTH-MUSCLE BY ACETYLCHOLINE [J].
FURCHGOTT, RF ;
ZAWADZKI, JV .
NATURE, 1980, 288 (5789) :373-376
[10]   REGIONAL AND CARDIAC HEMODYNAMIC-RESPONSES TO GLYCERYL TRINITRATE, ACETYLCHOLINE, BRADYKININ AND ENDOTHELIN-1 IN CONSCIOUS RATS - EFFECTS OF NG-NITRO-L-ARGININE METHYL-ESTER [J].
GARDINER, SM ;
COMPTON, AM ;
KEMP, PA ;
BENNETT, T .
BRITISH JOURNAL OF PHARMACOLOGY, 1990, 101 (03) :632-639