CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts

被引:264
作者
Akhavan, O. [2 ,3 ]
Azimirad, R. [1 ]
Safa, S. [4 ]
Hasani, E. [5 ]
机构
[1] Malek Ashtar Univ Technol, Tehran, Iran
[2] Sharif Univ Technol, Dept Phys, Tehran, Iran
[3] Sharif Univ Technol, Inst Nanosci & Nanotechnol, Tehran, Iran
[4] Tarbiat Modares Univ, Fac Engn, Dept Nanotechnol, Tehran, Iran
[5] Islamic Azad Univ, Karaj Branch, Fac Sci, Dept Phys, Karaj, Iran
关键词
OXIDE THIN-FILMS; COPPER-OXIDE; ANTIBACTERIAL ACTIVITY; ESCHERICHIA-COLI; CUO NANOSTRUCTURES; LIGHT IRRADIATION; CARBON NANOTUBES; TIO2; NANOPARTICLES; SPECTROSCOPY;
D O I
10.1039/c0jm04364h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Various morphologies of CuO/Cu(OH)(2) nanostructures with different adsorbed -OH contents were synthesized on an acid-treated Cu foil through variation of NaOH concentration from 0 to 50 mM with an in situ oxidation method. X-ray diffractometry and X-ray photoelectron spectroscopy (XPS) indicated formation of CuO on the Cu(OH)(2) crystalline phase at a growth temperature of 60 degrees C for 20 h. Antibacterial activity of the nanostructures against Escherichia coli bacteria was studied in the dark and under light irradiation. The nanostructures grown at a NaOH concentration of 30 mM showed the highest surface area and the strongest antibacterial activity among the samples. After elimination of the contribution of the effective surface area of the nanostructures to the antibacterial activity, it was found that the surface morphology and chemical composition of the nanostructures were the other most important parameters in the antibacterial activity of the nanostructures. Using XPS analysis, the better photocatalytic activity per surface area of the nanostructures prepared at higher NaOH concentrations was substantially attributed to the amount of adsorbed OH bonds on the surface of the nanostructures.
引用
收藏
页码:9634 / 9640
页数:7
相关论文
共 67 条
[1]   Characterisation of antibacterial copper releasing degradable phosphate glass fibres [J].
Abou Neel, EA ;
Ahmed, I ;
Pratten, J ;
Nazhat, SN ;
Knowles, JC .
BIOMATERIALS, 2005, 26 (15) :2247-2254
[2]   Interfacial Hydrothermal Synthesis of Cu@Cu2O Core-Shell Microspheres with Enhanced Visible-Light-Driven Photocatalytic Activity [J].
Ai, Zhihui ;
Zhang, Lizhi ;
Lee, Shuncheng ;
Ho, Wingkei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (49) :20896-20902
[3]   Silver nanoparticles within vertically aligned multi-wall carbon nanotubes with open tips for antibacterial purposes [J].
Akhavan, O. ;
Abdolahad, M. ;
Abdi, Y. ;
Mohajerzadeh, S. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (02) :387-393
[4]   Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts [J].
Akhavan, O. ;
Ghaderi, E. .
SURFACE & COATINGS TECHNOLOGY, 2010, 205 (01) :219-223
[5]   Visible light photo-induced antibacterial activity of CNT-doped TiO2 thin films with various CNT contents [J].
Akhavan, O. ;
Azimirad, R. ;
Safa, S. ;
Larijani, M. M. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (35) :7386-7392
[6]   Self-accumulated Ag nanoparticles on mesoporous TiO2 thin film with high bactericidal activities [J].
Akhavan, O. ;
Ghaderi, E. .
SURFACE & COATINGS TECHNOLOGY, 2010, 204 (21-22) :3676-3683
[7]   Photocatalytic Reduction of Graphene Oxide Nanosheets on TiO2 Thin Film for Photoinactivation of Bacteria in Solar Light Irradiation [J].
Akhavan, O. ;
Ghaderi, E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) :20214-20220
[8]   Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria [J].
Akhavan, O. ;
Mehrabian, M. ;
Mirabbaszadeh, K. ;
Azimirad, R. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (22)
[9]   Photocatalytic property of Fe2O3 nanograin chains coated by TiO2 nanolayer in visible light irradiation [J].
Akhavan, O. ;
Azimirad, R. .
APPLIED CATALYSIS A-GENERAL, 2009, 369 (1-2) :77-82
[10]   Chemical durability of metallic copper nanoparticles in silica thin films synthesized by sol-gel [J].
Akhavan, O. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (23)