Signalling in the yeasts: An informational cascade with links to the filamentous fungi

被引:240
作者
Banuett, F [1 ]
机构
[1] Univ Calif San Francisco, Sch Med, Dept Biochem & Biophys, San Francisco, CA 94143 USA
关键词
D O I
10.1128/MMBR.62.2.249-274.1998
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
All cells, from bacteria and yeasts to mammalian cells, respond to cues from their environment. A variety of mechanisms exist for the transduction of these external signals to the interior of the cell, resulting in altered patterns of protein activity. Eukaryotic cells commonly transduce external cues via a conserved module composed of three protein kinases, the mitogen-activated protein kinase (MAPK) cascade. This module can then activate substrates, some of which include transcriptional activators. Multiple MAPK signalling pathways coexist in a cell. This review considers different MAPK cascade signalling pathways that govern several aspects of the life cycle of budding and fission yeasts: conjugation and meiosis by the pheromone response pathway, stress response by the high-osmolarity and heat-sensing pathway, and pseudohyphal growth in response to activation of a subset of the components of the pheromone response pathway. Because the MAPK cascade components are highly conserved, a key question in studies of these pathways is the mechanism by which specificity of response is achieved. Several other issues to be addressed in this review concern the nature of the receptors used to sense the external signals and the mechanism by which the receptors communicate with other components leading to activation of the MAPK cascade. Recently, it has become apparent the MAPK cascades are important in governing the pathogenicity of filamentous fungi.
引用
收藏
页码:249 / +
页数:27
相关论文
共 242 条
[1]   THE OSMO-INDUCIBLE GPD1(+) GENE IS A TARGET OF THE SIGNALING PATHWAY INVOLVING WIS1 MAP-KINASE KINASE IN FISSION YEAST [J].
AIBA, H ;
YAMADA, H ;
OHMIYA, R ;
MIZUNO, T .
FEBS LETTERS, 1995, 376 (03) :199-201
[2]   GPD1, WHICH ENCODES GLYCEROL-3-PHOSPHATE DEHYDROGENASE, IS ESSENTIAL FOR GROWTH UNDER OSMOTIC-STRESS IN SACCHAROMYCES-CEREVISIAE, AND ITS EXPRESSION IS REGULATED BY THE HIGH-OSMOLARITY GLYCEROL RESPONSE PATHWAY [J].
ALBERTYN, J ;
HOHMANN, S ;
THEVELEIN, JM ;
PRIOR, BA .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (06) :4135-4144
[3]   Hyphal development in Neurospora crassa: Involvement of a two-component histidine kinase [J].
Alex, LA ;
Borkovich, KA ;
Simon, MI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (08) :3416-3421
[4]   THE ASPERGILLUS-NIDULANS ABAA GENE ENCODES A TRANSCRIPTIONAL ACTIVATOR THAT ACTS AS A GENETIC SWITCH TO CONTROL DEVELOPMENT [J].
ANDRIANOPOULOS, A ;
TIMBERLAKE, WE .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (04) :2503-2515
[5]   MATING PHEROMONE-INDUCED EXPRESSION OF THE MAT1-PM GENE OF SCHIZOSACCHAROMYCES-POMBE - IDENTIFICATION OF SIGNALING COMPONENTS AND CHARACTERIZATION OF UPSTREAM CONTROLLING ELEMENTS [J].
AONO, T ;
YANAI, H ;
MIKI, F ;
DAVEY, J ;
SHIMODA, C .
YEAST, 1994, 10 (06) :757-770
[6]  
Banuett F, 1996, DEVELOPMENT, V122, P2965
[7]   IDENTIFICATION OF FUZ7, A USTILAGO-MAYDIS MEK/MAPKK HOMOLOG REQUIRED FOR A-LOCUS-DEPENDENT AND A-LOCUS-INDEPENDENT STEPS IN THE FUNGAL LIFE-CYCLE [J].
BANUETT, F ;
HERSKOWITZ, I .
GENES & DEVELOPMENT, 1994, 8 (12) :1367-1378
[8]  
BANUETT F, 1992, TRENDS GENET, V8, P174, DOI 10.1016/0168-9525(92)90091-H
[9]   Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize [J].
Banuett, F .
ANNUAL REVIEW OF GENETICS, 1995, 29 :179-208
[10]   DIFFERENT A-ALLELES OF USTILAGO-MAYDIS ARE NECESSARY FOR MAINTENANCE OF FILAMENTOUS GROWTH BUT NOT FOR MEIOSIS [J].
BANUETT, F ;
HERSKOWITZ, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (15) :5878-5882