Location- and density-based hierarchical clustering using similarity analysis

被引:36
作者
Bajcsy, P
Ahuja, N
机构
[1] Cognex Corp, Acumen Prod Grp, Portland, OR 97062 USA
[2] Univ Illinois, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
point patterns; clustering; hierarchy of clusters; spatially interleaved clusters; density-based clustering; location-based clustering;
D O I
10.1109/34.713365
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new approach to hierarchical clustering of point patterns. Two algorithms for hierarchical location- and density-based clustering are developed. Each method groups points such that maximum intracluster similarity and intercluster dissimilarity are achieved for point locations or point separations. Performance of the clustering methods is compared with four other methods. The approach is applied to a two-step texture analysis, where points represent centroid and average color of the regions in image segmentation.
引用
收藏
页码:1011 / 1015
页数:5
相关论文
共 16 条
[1]  
AHUJA N, 1983, PATTERN MODELS
[2]  
BAJCSY P, 1996, P 13 INT C PATT REC, VB, P96
[3]   SHAPE FROM TEXTURE - INTEGRATING TEXTURE-ELEMENT EXTRACTION AND SURFACE ESTIMATION [J].
BLOSTEIN, D ;
AHUJA, N .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (12) :1233-1251
[4]  
Everitt B., 1993, CLUSTER ANAL
[5]  
Fotheringham AS, 1996, GEOGR ANAL, V28, P200
[6]  
GETIS A, 1978, MODELS SPATIAL PROCE
[7]  
GOWDA KC, 1978, PATTERN RECOGN, V10, P105
[8]   A BINARY DIVISION ALGORITHM FOR CLUSTERING REMOTELY-SENSED MULTISPECTRAL IMAGES [J].
HANAIZUMI, H ;
CHINO, S ;
FUJIMURA, S .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1995, 44 (03) :759-763
[9]  
Hart P.E., 1973, Pattern recognition and scene analysis
[10]  
Jain K, 1988, Algorithms for clustering data