Measuring gravity change caused by water storage variations: Performance assessment under controlled conditions

被引:26
作者
Christiansen, Lars [1 ]
Lund, Sanne [1 ]
Andersen, Ole B. [2 ]
Binning, Philip J. [1 ]
Rosbjerg, Dan [1 ]
Bauer-Gottwein, Peter [1 ]
机构
[1] DTU Environm, DK-2800 Lyngby, Denmark
[2] DTU Space, DK-2100 Copenhagen O, Denmark
关键词
4D Gravimetry; Hydrology; Scintrex CG-5; Storage change; Precision; Benchmark; GROUND-PENETRATING RADAR; SUPERCONDUCTING GRAVIMETER; AQUIFER-STORAGE; PRESSURE; SURFACE; SOILS;
D O I
10.1016/j.jhydrol.2011.03.004
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Subsurface water content is an important state variable in hydrological systems. Established methods to measure subsurface water content have a small support scale which causes scaling problems in many applications. Time-lapse relative gravimetry can give an integrated measure of soil water storage changes over tens to hundreds of cubic meters. The use of time-lapse gravimetry in hydrology has until recent years been limited by the large efforts required to obtain precise and accurate gravity data at the 1 mu Gal (10(-8) ms(-2)) scale. A typical modern relative gravimeter, the Scintrex CG-5, has a sensitivity of 1 mu Gal, corresponding to a layer of 0.024 m of water in an infinitely extended horizontal sheet. For gravity surveys using relative gravity meters, the precision is highly dependent on the methods used to operate the gravimeter in the field. Systematic errors, which are difficult to detect, can lead to a loss of accuracy. As a performance test of a CG-5 for applications of time-lapse gravity in hydrology, we have measured the change in water storage in an indoor basin. The experiment was designed to resemble a field application, e.g. a pumping test, a forced infiltration experiment or alluvial aquifer storage change along intermittent rivers, so that the results can be applied to field experiments. The use of a 20 m by 30 m rectangular basin with a known water volume resulted in complete control over the instrument accuracy. Precisions of 3 mu Gal and accuracies of <5 mu Gal were found for the time-lapse gravity change. An introduction to hydrogravimetric measurements and data processing are given in order to facilitate the use of the method by non-geophysicists. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:60 / 70
页数:11
相关论文
共 63 条
[1]   Assessing the likely value of gravity and drawdown measurements to constrain estimates of hydraulic conductivity and specific yield during unconfined aquifer testing [J].
Blainey, Joan B. ;
Ferre, Ty P. A. ;
Cordova, Jeff T. .
WATER RESOURCES RESEARCH, 2007, 43 (12)
[2]   Continuous gravity recording with Scintrex CG-3M meters: a promising tool for monitoring active zones [J].
Bonvalot, S ;
Diament, M ;
Gabalda, G .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1998, 135 (02) :470-494
[3]   Global atmospheric loading and gravity [J].
Boy, JP ;
Hinderer, J ;
Gegout, P .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1998, 109 (3-4) :161-177
[4]   NEW COMPUTATIONS OF TIDE-GENERATING POTENTIAL [J].
CARTWRIGHT, DE ;
TAYLER, RJ .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1971, 23 (01) :45-+
[5]   CORRECTED TABLES OF TIDAL HARMONICS [J].
CARTWRIGHT, DE ;
EDDEN, AC .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1973, 33 (03) :253-264
[6]   Monitoring aquifer recharge using repeated high-precision gravity measurements: A pilot study in South Weber, Utah [J].
Chapman, D. S. ;
Sahm, E. ;
Gettings, P. .
GEOPHYSICS, 2008, 73 (06) :WA83-WA93
[7]   Using time-lapse gravity for groundwater model calibration: An application to alluvial aquifer storage [J].
Christiansen, L. ;
Binning, P. J. ;
Rosbjerg, D. ;
Andersen, O. B. ;
Bauer-Gottwein, P. .
WATER RESOURCES RESEARCH, 2011, 47
[8]   Simulating the influence of water storage changes on the superconducting gravimeter of the Geodetic Observatory Wettzell, Germany [J].
Creutzfeldt, Benjamin ;
Guentner, Andreas ;
Kluegel, Thomas ;
Wziontek, Hartmut .
GEOPHYSICS, 2008, 73 (06) :WA95-WA104
[9]  
CROOK N, 2008, EOS T AGU S, V89
[10]   Simulated gravitational response to hydraulic testing of unconfined aquifers [J].
Damiata, BN ;
Lee, TC .
JOURNAL OF HYDROLOGY, 2006, 318 (1-4) :348-359