Application of atomic layer deposition of platinum to solid oxide fuel cells

被引:106
作者
Jiang, Xirong [2 ]
Huang, Hong [3 ]
Prinz, Friedrich B. [3 ,4 ]
Bent, Stacey F. [1 ]
机构
[1] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
关键词
D O I
10.1021/cm7033189
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, atomic layer deposition (ALD) was used to deposit Pt thin films as an electrode/catalyst layer for solid oxide fuel cells. I-V measurements were performed to determine the dependence of the fuel cell performance on the Pt film thickness at different operating temperatures. The measured fuel cell performance revealed that comparable peak power densities were achieved for ALD-deposited Pt anodes with only one-fifth of the platinum loading relative to dc-sputtered Pt anodes. The Pt films fabricated by dc sputtering and ALD had different microstructure, which accounted for the difference in their performance as a fuel cell anode. In addition to the continuous electrocatalyst layer, a micropatterned Pt structure was fabricated via area-selective ALD and used as a current collector grid/patterned catalyst for the fuel cells. An improvement of the fuel cell performance by a factor of 10 was observed using the Pt current collector grid/patterned catalyst integrated onto cathodic La0.6Sr0.4Co0.2Fe0.8O3-delta. The study suggests the potential to achieve improved performance and/or lower loadings using ALD for catalysts in fuel cells.
引用
收藏
页码:3897 / 3905
页数:9
相关论文
共 32 条
[1]  
Carrette L, 2001, FUEL CELLS, V1, P5, DOI 10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO
[2]  
2-G
[3]   Investigation of self-assembled monolayer resists for hafnium dioxide atomic layer deposition [J].
Chen, R ;
Kim, H ;
McIntyre, PC ;
Bent, SF .
CHEMISTRY OF MATERIALS, 2005, 17 (03) :536-544
[4]   Self-assembled monolayer resist for atomic layer deposition of HfO2 and ZrO2 high-κ gate dielectrics [J].
Chen, R ;
Kim, H ;
McIntyre, PC ;
Bent, SF .
APPLIED PHYSICS LETTERS, 2004, 84 (20) :4017-4019
[5]  
CRABB K, UNPUB
[6]   Surface cleaning and characterization of yttria-stabilized zirconia [J].
de Ridder, M ;
van Welzenis, RG ;
Brongersma, HH .
SURFACE AND INTERFACE ANALYSIS, 2002, 33 (04) :309-317
[7]   Solid oxide fuel cell cathodes: Polarization mechanisms and modeling of the electrochemical performance [J].
Fleig, J .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 :361-382
[8]   Microelectrodes in solid state ionics [J].
Fleig, J .
SOLID STATE IONICS, 2003, 161 (3-4) :279-289
[9]   Active sites imaging for oxygen reduction at the La0.9Sr0.1MnO3-x/yttria-stabilized zirconia interface by secondary-ion mass spectrometry [J].
Horita, T ;
Yamaji, K ;
Ishikawa, M ;
Sakai, N ;
Yokokawa, H ;
Kawada, T ;
Kato, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (09) :3196-3202
[10]   Oxygen reduction sites and diffusion paths at La0.9Sr0.1MnO3-x/yttria-stabilized zirconia interface for different cathodic overvoltages by secondary-ion mass spectrometry [J].
Horita, T ;
Yamaji, K ;
Sakai, N ;
Yokokawa, H ;
Kawada, T ;
Kato, T .
SOLID STATE IONICS, 2000, 127 (1-2) :55-65