Critical Binder cumulant in two-dimensional anisotropic Ising models

被引:78
作者
Selke, W [1 ]
Shchur, LN
机构
[1] Rhein Westfal TH Aachen, Inst Theoret Phys, D-52056 Aachen, Germany
[2] LD Landau Theoret Phys Inst, Chernogolovka 142432, Russia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2005年 / 38卷 / 44期
关键词
D O I
10.1088/0305-4470/38/44/L03
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Binder cumulant at the phase transitions of Ising models on square lattices with various ferromagnetic nearest- and next-nearest-neighbour couplings is determined using mainly Monte Carlo techniques. We discuss the possibility of relating the value of the critical cumulant in the isotropic, nearest neighbour and in the anisotropic cases to each other by means of a scale transformation in rectangular geometry to pinpoint universal and nonuniversal features.
引用
收藏
页码:L739 / L744
页数:6
相关论文
共 11 条
[1]   PHASE-DIAGRAM OF THE ISING-MODEL ON THE SQUARE LATTICE WITH CROSSED DIAGONAL BONDS [J].
BERKER, AN ;
HUI, K .
PHYSICAL REVIEW B, 1993, 48 (17) :12393-12398
[2]   FINITE-SIZE EFFECTS AT CRITICAL-POINTS WITH ANISOTROPIC CORRELATIONS - PHENOMENOLOGICAL SCALING THEORY AND MONTE-CARLO SIMULATIONS [J].
BINDER, K ;
WANG, JS .
JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (1-2) :87-126
[3]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140
[4]   Nonuniversal finite-size scaling in anisotropic systems [J].
Chen, XS ;
Dohm, V .
PHYSICAL REVIEW E, 2004, 70 (05) :7
[5]   Nonuniversal finite-size scaling in anisotropic systems (vol 70, pg 056136, 2004) [J].
Chen, XS ;
Dohm, V .
PHYSICAL REVIEW E, 2005, 71 (05)
[6]   ORDER-DISORDER IN HEXAGONAL LATTICES [J].
HOUTAPPEL, RMF .
PHYSICA, 1950, 16 (05) :425-455
[7]   UNIVERSAL RATIO OF MAGNETIZATION MOMENTS IN 2-DIMENSIONAL ISING-MODELS [J].
KAMIENIARZ, G ;
BLOTE, HWJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (02) :201-212
[8]   UNIVERSAL CONFIGURATIONAL STRUCTURE IN TWO-DIMENSIONAL SCALAR MODELS [J].
NICOLAIDES, D ;
BRUCE, AD .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (01) :233-244
[9]   Crystal statistics I A two-dimensional model with an order-disorder transition [J].
Onsager, L .
PHYSICAL REVIEW, 1944, 65 (3/4) :117-149
[10]  
PRIVMAN V, 1991, PHASE TRANSITIONS CR, V10