Facile Transfer Method for Fabricating Light-Harvesting Systems for Polymer Solar Cells

被引:22
作者
Hsiao, Yu-Sheng [1 ]
Chien, Fan-Ching [1 ]
Huang, Jen-Hsien [1 ]
Chen, Chih-Ping [2 ]
Kuo, Chiung-Wen [1 ]
Chu, Chih-Wei [1 ]
Chen, Peilin [1 ]
机构
[1] Acad Sinica, Res Ctr Appl Sci, Taipei 11529, Taiwan
[2] Ind Technol Res Inst, Mat & Chem Labs, Hsiuchu 300, Taiwan
关键词
INTERNAL QUANTUM EFFICIENCY; CONJUGATED POLYMERS; NANOPILLAR ARRAYS; LITHOGRAPHY; ABSORPTION; GRATINGS;
D O I
10.1021/jp201504z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, we used a transferring process to fabricate a simple light-harvesting system featuring 2D periodic granular-like electrodes for polymer solar cells (PSCs). This transferring technique, which was based on nanosphere lithography, could be used to fabricate periodic nanostructures on both the photoactive layers and the Al electrodes in the normal PSC device configuration (indium tin oxide glass/PEDOT: PSS/photoactive layer/Al). We investigated the properties of the PSC devices featuring periodic nanostructures in the photo active layers using reflection UV-vis spectra and in terms of their external quantum efficiency (EQE) and photocurrent voltage characteristics. In addition, we used numerical simulations to evaluate the electromagnetic field distributions in the devices. The light trapping efficiency in the PSCs featuring periodic nanostructures was enhanced as a result of light scattering and surface plasmon resonance effects. Relative to conventional devices featuring a flat geometry, the power conversion efficiency of a thin (ca. 150 nm) photoactive P3HT/C-70 bilayer device increased by 90% when it featured a periodic nanostructure, with up to 20-fold increases in EQE observed at the absorption edge. Furthermore, when we engineered periodic nanostructures into bulk heterojunction devices incorporating a low-bandgap (LBG) photoactive layer (PTPTBT:PC70BM), the photocurrent increased by 20%, suggesting that this facile light-harvesting system is suitable for both thin P3HT and LBG PSC applications in the visible to near-infrared (NIR) region.
引用
收藏
页码:11864 / 11870
页数:7
相关论文
共 39 条
[1]   Organic tandem solar cells: A review [J].
Ameri, Tayebeh ;
Dennler, Gilles ;
Lungenschmied, Christoph ;
Brabec, Christoph J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (04) :347-363
[2]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[3]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[4]   Low-band-gap conjugated polymers based on thiophene, benzothiadiazole, and benzobis(thiadiazole) [J].
Bundgaard, E ;
Krebs, FC .
MACROMOLECULES, 2006, 39 (08) :2823-2831
[5]   Low-bandgap poly(thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells [J].
Chen, Chih-Ping ;
Chan, Shu-Hua ;
Chao, Teng-Chih ;
Ting, Ching ;
Ko, Bao-Tsan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (38) :12828-12833
[6]   Polymer solar cells with enhanced open-circuit voltage and efficiency [J].
Chen, Hsiang-Yu ;
Hou, Jianhui ;
Zhang, Shaoqing ;
Liang, Yongye ;
Yang, Guanwen ;
Yang, Yang ;
Yu, Luping ;
Wu, Yue ;
Li, Gang .
NATURE PHOTONICS, 2009, 3 (11) :649-653
[7]   Low-bandgap conjugated polymer for high efficient photovoltaic applications [J].
Chen, Yi-Chun ;
Yu, Chao-Ying ;
Fan, Yu-Ling ;
Hung, Ling-I ;
Chen, Chih-Ping ;
Ting, Ching .
CHEMICAL COMMUNICATIONS, 2010, 46 (35) :6503-6505
[8]   Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances [J].
Cocoyer, C ;
Rocha, L ;
Sicot, L ;
Geffroy, B ;
de Bettignies, R ;
Sentein, C ;
Fiorini-Debuisschert, C ;
Raimond, P .
APPLIED PHYSICS LETTERS, 2006, 88 (13)
[9]   Fabrication of a light trapping system for organic solar cells [J].
Dal Zilio, Simone ;
Tvingstedt, Kristofer ;
Inganas, Olle ;
Tormen, Massimo .
MICROELECTRONIC ENGINEERING, 2009, 86 (4-6) :1150-1154
[10]   Polymer-Fullerene Bulk-Heterojunction Solar Cells [J].
Dennler, Gilles ;
Scharber, Markus C. ;
Brabec, Christoph J. .
ADVANCED MATERIALS, 2009, 21 (13) :1323-1338