Backward stochastic differential equations in finance

被引:1612
作者
El Karoui, N [1 ]
Peng, S
Quenez, MC
机构
[1] Univ Paris 06, CNRS URA 224, Probabil Lab, Paris, France
[2] Shandong Univ, Math Inst, Jinan 250100, Peoples R China
[3] Univ Marne Vallee, Equipe Math, Noisy Le Grand, France
关键词
backward stochastic equation; mathematical finance; pricing; hedging portfolios; incomplete market; constrained portfolio; recursive utility; stochastic control; viscosity solution of PDE; Malliavin derivative;
D O I
10.1111/1467-9965.00022
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We are concerned with different properties of backward stochastic differential equations and their applications to finance. These equations, first introduced by Pardoux and Peng (1990), are useful for the theory of contingent claim valuation, especially cases with constraints and for the theory of recursive utilities, introduced by Duffie and Epstein (1992a, 1992b).
引用
收藏
页码:1 / 71
页数:71
相关论文
共 60 条
[1]  
[Anonymous], ANN APPL PROBAB
[2]  
[Anonymous], STOCHASTICS
[3]  
ANSEL JP, 1992, ANN I H POINCARE-PR, V28, P375
[4]  
ARKIN V, 1979, SOV MATH DOKL, V20, P1
[5]  
Back K., 1987, Stochastics, V22, P151, DOI 10.1080/17442508708833471
[6]   ON THE FUNDAMENTAL THEOREM OF ASSET PRICING WITH AN INFINITE STATE-SPACE [J].
BACK, K ;
PLISKA, SR .
JOURNAL OF MATHEMATICAL ECONOMICS, 1991, 20 (01) :1-18
[7]   EXISTENCE OF OPTIMAL STOCHASTIC CONTROL LAWS [J].
BENES, VE .
SIAM JOURNAL ON CONTROL, 1971, 9 (03) :446-&
[8]   EXISTENCE OF OPTIMAL STRATEGIES BASED ON SPECIFIED INFORMATION, FOR A CLASS OF STOCHASTIC DECISION PROBLEMS [J].
BENES, VE .
SIAM JOURNAL ON CONTROL, 1970, 8 (02) :179-&
[9]  
Bismut J.M., 1978, Seminaire de Probabilites XII, Volume 649 of Lecture Notes in Mathematics, V649, P180
[10]   CONJUGATE CONVEX FUNCTIONS IN OPTIMAL STOCHASTIC CONTROL [J].
BISMUT, JM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 44 (02) :384-404