Oxygen Vacancies Evoked Blue TiO2(B) Nanobelts with Efficiency Enhancement in Sodium Storage Behaviors

被引:214
作者
Zhang, Yan [1 ]
Ding, Zhiying [1 ]
Foster, Christopher W. [2 ]
Banks, Craig E. [2 ]
Qiu, Xiaoqing [1 ]
Ji, Xiaobo [1 ]
机构
[1] Cent S Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[2] Manchester Metropolitan Univ, Fac Sci & Engn, Manchester M1 5GD, Lancs, England
基金
中国国家自然科学基金;
关键词
anodes; blue TiO2(B); electrochemistry; oxygen vacancies; sodium-ion batteries; LITHIUM-ION BATTERIES; ATOMIC-LAYER-DEPOSITION; TITANIUM-DIOXIDE; NANOTUBE ARRAYS; ANODE MATERIAL; CARBON; PERFORMANCE; ANATASE; NANOPARTICLES; OXIDE;
D O I
10.1002/adfm.201700856
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Oxygen vacancies (OVs) dominate the physical and chemical properties of metal oxides, which play crucial roles in the various fields of applications. Density functional theory calculations show the introduction of OVs in TiO2(B) gives rise to better electrical conductivity and lower energy barrier of sodiation. Here, OVs evoked blue TiO2(B) (termed as B-TiO2(B)) nanobelts are successfully designed upon the basis of electronically coupled conductive polymers to TiO2, which is confirmed by electron paramagnetic resonance and X-ray photoelectron spectroscopy. The superiorities of OVs with the aid of carbon encapsulation lead to higher capacity (210.5 mAh g(-1) (B-TiO2(B)) vs 102.7 mAh g(-1) (W-TiO2(B)) at 0.5 C) and remarkable long-term cyclability (the retention of 94.4% at a high rate of 10 C after 5000 times). In situ X-ray diffractometer analysis spectra also confirm that an enlarged interlayer spacing stimulated by OVs is beneficial to accommodate insertion and removal of sodium ions to accelerate storage kinetics and preserve its original crystal structure. The work highlights that injecting OVs into metal oxides along with carbon coating is an effective strategy for improving capacity and cyclability performances in other metal oxide based electrochemical energy systems.
引用
收藏
页数:12
相关论文
共 76 条
[1]  
[Anonymous], 2014, ANGEW CHEMIE, DOI DOI 10.1002/ANGE.201406719
[2]  
[Anonymous], 2009, J CHEM PHYS
[3]   Lithium-ion intercalation into TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
García, R ;
Bruce, PG .
ADVANCED MATERIALS, 2005, 17 (07) :862-+
[4]   Lithium Insertion and Transport in the TiO2-B Anode Material: A Computational Study [J].
Arrouvel, Corinne ;
Parker, Stephen C. ;
Islam, M. Saiful .
CHEMISTRY OF MATERIALS, 2009, 21 (20) :4778-4783
[5]   Protonated titanates and TiO2 nanostructured materials:: Synthesis, properties, and applications [J].
Bavykin, Dmitry V. ;
Friedrich, Jens M. ;
Walsh, Frank C. .
ADVANCED MATERIALS, 2006, 18 (21) :2807-2824
[6]   The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes [J].
Bavykin, DV ;
Parmon, VN ;
Lapkin, AA ;
Walsh, FC .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (22) :3370-3377
[7]   PHYSICAL-PROPERTIES OF BRONZE MXTIO2(B) [J].
BROHAN, L ;
MARCHAND, R .
SOLID STATE IONICS, 1983, 9-10 (DEC) :419-424
[8]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[9]   Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling [J].
Chen, Chaoji ;
Wen, Yanwei ;
Hu, Xianluo ;
Ji, Xiulei ;
Yan, Mengyu ;
Mai, Liqiang ;
Hu, Pei ;
Shan, Bin ;
Huang, Yunhui .
NATURE COMMUNICATIONS, 2015, 6
[10]   Pinecone-like hierarchical anatase TiO2 bonded with carbon enabling ultrahigh cycling rates for sodium storage [J].
Chen, Jun ;
Zou, Guoqiang ;
Hou, Hongshuai ;
Zhang, Yan ;
Huang, Zhaodong ;
Ji, Xiaobo .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (32) :12591-12601