Universality classes in isotropic, Abelian, and non-Abelian sandpile models

被引:48
作者
Milshtein, E [1 ]
Biham, O [1 ]
Solomon, S [1 ]
机构
[1] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
关键词
D O I
10.1103/PhysRevE.58.303
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Universality in isotropic, Abelian, and non-Abelian, sandpile models is examined using extensive numerical simulations. To characterize the critical behavior we employ an extended set of critical exponents, geometric features of the avalanches, as well as scaling functions describing the time evolution of average quantities such as the area and size during the avalanche. Comparing between the Abelian Bak-Tang-Wiesenfedd model [P. Bak, C. Tang, and K. Wiensenfeld, Phys. Rev. Lett. 59, 381 (1987)] and the non-Abelian models introduced by Manna [S. S. Manna, J. Phys. A 24, L363 (1991)] and Zhang [Ti. C. Zhang, Phys. Rev. Lett. 63, 470 (1989)] we find strong indications that each one of these models belongs to a distinct universality class.
引用
收藏
页码:303 / 310
页数:8
相关论文
共 33 条
[1]   SELF-ORGANIZED CRITICALITY [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW A, 1988, 38 (01) :364-374
[2]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[3]   Universality in sandpile models [J].
BenHur, A ;
Biham, O .
PHYSICAL REVIEW E, 1996, 53 (02) :R1317-R1320
[4]   SELF-ORGANIZED CRITICALITY AND SINGULAR DIFFUSION [J].
CARLSON, JM ;
CHAYES, JT ;
GRANNAN, ER ;
SWINDLE, GH .
PHYSICAL REVIEW LETTERS, 1990, 65 (20) :2547-2550
[5]   SELF-ORGANIZED CRITICALITY IN SANDPILES - NATURE OF THE CRITICAL PHENOMENON [J].
CARLSON, JM ;
CHAYES, JT ;
GRANNAN, ER ;
SWINDLE, GH .
PHYSICAL REVIEW A, 1990, 42 (04) :2467-2470
[6]   DYNAMIC AND SPATIAL-ASPECTS OF SANDPILE CELLULAR AUTOMATA [J].
CHRISTENSEN, K ;
FOGEDBY, HC ;
JENSEN, HJ .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (3-4) :653-684
[7]   SANDPILE MODELS WITH AND WITHOUT AN UNDERLYING SPATIAL STRUCTURE [J].
CHRISTENSEN, K ;
OLAMI, Z .
PHYSICAL REVIEW E, 1993, 48 (05) :3361-3372
[8]  
CILIBERTO S, 1994, J PHYS I, V4, P223, DOI 10.1051/jp1:1994134
[9]   Symmetries and fixed point stability of stochastic differential equations modeling self-organized criticality [J].
Corral, A ;
DiazGuilera, A .
PHYSICAL REVIEW E, 1997, 55 (03) :2434-2445
[10]   EXACTLY SOLVED MODEL OF SELF-ORGANIZED CRITICAL PHENOMENA [J].
DHAR, D ;
RAMASWAMY, R .
PHYSICAL REVIEW LETTERS, 1989, 63 (16) :1659-1662