The localization transition of the two-dimensional Lorentz model

被引:57
作者
Bauer, T. [1 ,2 ]
Hoefling, F. [3 ,4 ,5 ]
Munk, T. [1 ,2 ]
Frey, E. [1 ,2 ]
Franosch, T. [1 ,2 ,6 ]
机构
[1] Univ Munich, Fak Phys, Arnold Sommerfeld Ctr Theoret Phys ASC, D-80333 Munich, Germany
[2] Univ Munich, Fak Phys, Ctr NanoSci CeNS, D-80333 Munich, Germany
[3] Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England
[4] Max Planck Inst Met Res, D-70569 Stuttgart, Germany
[5] Univ Stuttgart, Inst Theoret & Angew Phys, D-70569 Stuttgart, Germany
[6] Univ Erlangen Nurnberg, Inst Theoret Phys, D-91058 Erlangen, Germany
关键词
VELOCITY AUTOCORRELATION FUNCTION; LONG-TIME BEHAVIOR; DIFFUSION-COEFFICIENT; PLASMA-MEMBRANE; SIMULATION; TRANSPORT; EXPONENTS; PROTEINS; DYNAMICS;
D O I
10.1140/epjst/e2010-01313-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the dynamics of a single tracer particle performing Brownian motion in a two-dimensional course of randomly distributed hard obstacles. At a certain critical obstacle density, the motion of the tracer becomes anomalous over many decades in time, which is rationalized in terms of an underlying percolation transition of the void space. In the vicinity of this critical density the dynamics follows the anomalous one up to a crossover time scale where the motion becomes either diffusive or localized. We analyze the scaling behavior of the time-dependent diffusion coefficient D(t) including corrections to scaling. Away from the critical density, D(t) exhibits universal hydrodynamic long-time tails both in the diffusive as well as in the localized phase.
引用
收藏
页码:103 / 118
页数:16
相关论文
共 58 条
[1]   DECAY OF CORRELATIONS IN THE LORENTZ GAS [J].
ALDER, BJ ;
ALLEY, WE .
PHYSICA A, 1983, 121 (03) :523-530
[2]   LONG-TIME CORRELATION EFFECTS ON DISPLACEMENT DISTRIBUTIONS [J].
ALDER, BJ ;
ALLEY, WE .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (04) :341-347
[3]  
ALLEY WE, 1979, THESIS CALIFORNIA U
[4]  
[Anonymous], 1968, An introduction to probability theory and its applications
[5]   Dynamic glass transition in two dimensions [J].
Bayer, M. ;
Brader, J. M. ;
Ebert, F. ;
Fuchs, M. ;
Lange, E. ;
Maret, G. ;
Schilling, R. ;
Sperl, M. ;
Wittmer, J. P. .
PHYSICAL REVIEW E, 2007, 76 (01)
[6]  
Ben-Avraham D., 2000, Diffusion and reactions in fractals and disordered systems
[7]   COMPUTER EXPERIMENT ON DIFFUSION IN LORENTZ GAS [J].
BRUIN, C .
PHYSICA, 1974, 72 (02) :261-286
[8]   LOGARITHMIC TERMS IN DIFFUSION-COEFFICIENT FOR LORENTZ GAS [J].
BRUIN, C .
PHYSICAL REVIEW LETTERS, 1972, 29 (25) :1670-&
[9]  
COLBERG PH, 2009, ARXIV09123824PHYSICS
[10]   SOLUTE TRANSPORT IN HETEROGENEOUS POROUS FORMATIONS [J].
DAGAN, G .
JOURNAL OF FLUID MECHANICS, 1984, 145 (AUG) :151-177