Fractional Boltzmann equation for multiple scattering of resonance radiation in low-temperature plasma

被引:15
作者
Uchaikin, V. V. [1 ]
Sibatov, R. T. [1 ]
机构
[1] Ulyanovsk State Univ, Ulyanovsk 432000, Russia
基金
俄罗斯基础研究基金会;
关键词
ANOMALOUS DIFFUSION; TRANSPORT;
D O I
10.1088/1751-8113/44/14/145501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The fractional Boltzmann equation for resonance radiation transport in plasma is proposed. We start with the standard Boltzmann equation; averaging over photon frequencies leads to the appearance of a fractional derivative. This fact is in accordance with the conception of latent variables leading to hereditary and non-local dynamics (in particular, fractional dynamics). The presence of a fractional material derivative in the equation is concordant with heavy tailed distribution of photon path lengths and with spatiotemporal coupling peculiar to the process. We discuss some methods of solving the obtained equation and demonstrate numerical results in some simple cases.
引用
收藏
页数:11
相关论文
共 31 条
[1]   Photonic superdiffusive motion in resonance line radiation trapping Partial frequency redistribution effects [J].
Alves-Pereira, A. R. ;
Nunes-Pereira, E. J. ;
Martinho, J. M. G. ;
Berberan-Santos, M. N. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (15)
[2]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[3]  
[Anonymous], 1999, Chance and Stability Stable Distributions and their Applications, DOI DOI 10.1515/9783110935974
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]  
Bardou F., 2002, LEVY STAT LASER COOL
[6]   Photonic superdiffusive motion in resonance radiation trapping [J].
Berberan-Santos, M. N. ;
Nunes-Pereira, E. J. ;
Martinho, J. M. G. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (17)
[7]  
BERBERANSANTOS MN, 1999, RESONANCE ENERGY TRA
[8]  
BIBIRMAN LM, 1947, SOV PHYS JETP, V17, P416
[9]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[10]   Comment on "Towards deterministic equations for Levy walks: The fractional material derivative" [J].
Chukbar, KV ;
Zaburdaev, VY .
PHYSICAL REVIEW E, 2003, 68 (03) :2-331012