The beta-function in N = 2 supersymmetric Yang-Mills theory

被引:16
作者
Ritz, A [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Theoret Phys Grp, London SW7 2BZ, England
关键词
D O I
10.1016/S0370-2693(98)00748-5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The constraints of N=2 supersymmetry, in combination with several other quire general assumptions, have recently been used to show that N=2 supersymmetric Yang-Mills theory has a low energy quantum parameter space symmetry characterised by the discrete group Gamma(U)(2). We show that if one also assumes the commutativity of renormalization group flow with the action of this group on the complexified coupling constant tau, then this is sufficient to determine the non-perturbative beta-function, given knowledge of its weak coupling behaviour. The result coincides with the outcome of direct calculations from the Seiberg-Witten solution. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:54 / 60
页数:7
相关论文
共 31 条
[1]   Solving N=2 supersymmetric Yang-Mills theory by reflection symmetry of quantum vacua [J].
Bonelli, G ;
Matone, M ;
Tonin, M .
PHYSICAL REVIEW D, 1997, 55 (10) :6466-6470
[2]   Nonperturbative renormalization group equation and beta function in N=2 supersymmetric Yang-Mills theory [J].
Bonelli, G ;
Matone, M .
PHYSICAL REVIEW LETTERS, 1996, 76 (22) :4107-4110
[3]   One-dimensional flows in the quantum Hall system [J].
Burgess, CP ;
Lutken, CA .
NUCLEAR PHYSICS B, 1997, 500 (1-3) :367-378
[4]   Constraints on beta functions from duality [J].
Damgaard, PH ;
Haagensen, PE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (13) :4681-4686
[5]   Multi-instanton calculus in N=2 supersymmetric gauge theory [J].
Dorey, N ;
Khoze, VV ;
Mattis, MP .
PHYSICAL REVIEW D, 1996, 54 (04) :2921-2943
[6]   On N=2 supersymmetric QCD with four flavors [J].
Dorey, N ;
Khoze, VV ;
Mattis, MP .
NUCLEAR PHYSICS B, 1997, 492 (03) :607-622
[7]   INSTANTON CALCULATIONS VERSUS EXACT RESULTS IN 4-DIMENSIONAL SUSY GAUGE-THEORIES [J].
FINNELL, D ;
POULIOT, P .
NUCLEAR PHYSICS B, 1995, 453 (1-2) :225-239
[8]   Uniqueness of the Seiberg-Witten effective Lagrangian [J].
Flume, R ;
Magro, M ;
ORaifeartaigh, L ;
Sachs, I ;
Schnetz, O .
NUCLEAR PHYSICS B, 1997, 494 (1-2) :331-345
[9]  
Gradshteyn IS., 1996, TABLE INTEGRALS SERI
[10]   IMPROVED METHODS FOR SUPERGRAPHS [J].
GRISARU, MT ;
SIEGEL, W ;
ROCEK, M .
NUCLEAR PHYSICS B, 1979, 159 (03) :429-450