Mechanised materials

被引:93
作者
Boyle, Megan M. [1 ,2 ]
Smaldone, Ronald A. [1 ,2 ]
Whalley, Adam C. [1 ,2 ]
Ambrogio, Michael W. [1 ,2 ]
Botros, Youssry Y. [1 ,2 ,3 ,4 ]
Stoddart, J. Fraser [1 ,2 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[3] Intel Labs, Santa Clara, CA 95054 USA
[4] KACST, Natl Ctr Nano Technol Res, Riyadh 11442, Saudi Arabia
关键词
METAL-ORGANIC FRAMEWORKS; ARTIFICIAL MOLECULAR MUSCLES; MOTOR PROTEINS; TETRATHIAFULVALENE UNIT; SUPRAMOLECULAR NANOVALVE; POLYETHYLENE-GLYCOL; BIOMOLECULAR MOTOR; HYDROGEN STORAGE; DNA; DRIVEN;
D O I
10.1039/c0sc00453g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Throughout history, mankind has attempted to mimic the natural world-building wings to fly like the birds and fabricating systems to harness energy from the sun like our botanical brethren. However, on account of the enormous complexity that Nature has accrued over millions of years-more often than not-this imitation has resulted in failure. It was only once systems were developed that sought a looser connection to Nature, rather than attempting to reproduce it in a direct manner, that we were successful in accomplishing our goals. It is tempting to take these lessons we have learned from the macroscopic world and apply them to the nanoscale. Rather than attempting to replicate biological molecular machines capable of performing macroscopic motion, it is important to create a more robust world. In the past two decades, chemists have been synthesizing molecular switches and assembling molecular machines in order to study their properties and understand their function. Just as the artist takes to his or her canvas to create some masterpiece, chemists need to move to surfaces and interfaces in order to illicit function from these advanced integrated systems. In this mini-review we (1) outline several synthetic molecular machines that have been pinned down on surfaces to induce macroscale function and motion and (2) highlight some bioconjugated molecular devices which are capable of harnessing motion. Finally, we reflect upon the concept of appending molecular machinery to biological entities in order to express a range of properties.
引用
收藏
页码:204 / 210
页数:7
相关论文
共 118 条
[1]   STRUCTURE AT 2.8-ANGSTROM RESOLUTION OF F1-ATPASE FROM BOVINE HEART-MITOCHONDRIA [J].
ABRAHAMS, JP ;
LESLIE, AGW ;
LUTTER, R ;
WALKER, JE .
NATURE, 1994, 370 (6491) :621-628
[2]   Snap-Top Nanocarriers [J].
Ambrogio, Michael W. ;
Pecorelli, Travis A. ;
Patel, Kaushik ;
Khashab, Niveen M. ;
Trabolsi, All ;
Khatib, Hussam A. ;
Botros, Youssry Y. ;
Zink, Jeffrey I. ;
Stoddarrt, J. Fraser .
ORGANIC LETTERS, 2010, 12 (15) :3304-3307
[3]   A MOLECULAR SHUTTLE [J].
ANELLI, PL ;
SPENCER, N ;
STODDART, JF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1991, 113 (13) :5131-5133
[4]   pH Clock-Operated Mechanized Nanoparticles [J].
Angelos, Sarah ;
Khashab, Niveen M. ;
Yang, Ying-Wei ;
Trabolsi, Ali ;
Khatib, Hussam A. ;
Stoddart, J. Fraser ;
Zink, Jeffrey I. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (36) :12912-+
[5]  
Asakawa M, 1998, ANGEW CHEM INT EDIT, V37, P333, DOI 10.1002/(SICI)1521-3773(19980216)37:3<333::AID-ANIE333>3.0.CO
[6]  
2-P
[7]  
Balzani V, 2000, ANGEW CHEM INT EDIT, V39, P3348, DOI 10.1002/1521-3773(20001002)39:19<3348::AID-ANIE3348>3.0.CO
[8]  
2-X
[9]   Molecular machines [J].
Balzani, V ;
Gómez-López, M ;
Stoddart, JF .
ACCOUNTS OF CHEMICAL RESEARCH, 1998, 31 (07) :405-414
[10]   Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs [J].
Balzani, V ;
Credi, A ;
Mattersteig, G ;
Matthews, OA ;
Raymo, FM ;
Stoddart, JF ;
Venturi, M ;
White, AJP ;
Williams, DJ .
JOURNAL OF ORGANIC CHEMISTRY, 2000, 65 (07) :1924-1936