Continuous wavelet transforms on the sphere

被引:56
作者
Holschneider, M
机构
[1] Centre de Physique Théorique, U. Propre de Recherche 7061, CNRS, F-13288 Marseille, Cedex 9, Luminy
关键词
D O I
10.1063/1.531623
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this very short paper we shall construct a continuous wavelet analysis based on dilations translations and rotations on the sphere. It is the analog of the construction proposed by Murenzi [in his thesis, 1990], on R(2). At small scale we shall recover the Euclidian structure of the sphere. At large scale we obtain that the wavelet transform decays rapidly because the sphere is compact. (C) 1996 American Institute of Physics.
引用
收藏
页码:4156 / 4165
页数:10
相关论文
共 11 条
[1]  
FREEDEN N, 1995, WAVELET ANAL SPHERE
[2]   WAVELET ANALYSIS ON THE CIRCLE [J].
HOLSCHNEIDER, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (01) :39-44
[3]   POINTWISE ANALYSIS OF RIEMANN NONDIFFERENTIABLE FUNCTION [J].
HOLSCHNEIDER, M ;
TCHAMITCHIAN, P .
INVENTIONES MATHEMATICAE, 1991, 105 (01) :157-175
[4]  
JAFARD S, 1989, C R ACAD SCI PARIS 1, V308, P79
[5]  
MURENZI R, 1990, THESIS LOUVAIN NEUVE
[6]  
POTS D, 1995, APPROXIMATION THEORY, V2, P335
[7]  
RUBIN B, 1994, CONTINUOUS WAVELET T
[8]  
SCHROEDER P, 1995, SPHERICAL WAVELETS T
[9]  
STDAHLKE, 1995, WAVELET ANAL SPHERE
[10]   POSITION-FREQUENCY ANALYSIS FOR SIGNALS DEFINED ON SPHERES [J].
TORRESANI, B .
SIGNAL PROCESSING, 1995, 43 (03) :341-346