Methane reforming to synthesis gas over Ni catalysts modified with noble metals

被引:289
作者
Li, Dalin [1 ,2 ]
Nakagawa, Yoshinao [1 ]
Tomishige, Keiichi [1 ]
机构
[1] Tohoku Univ, Sch Engn, Dept Appl Chem, Aoba Ku, Sendai, Miyagi 9808579, Japan
[2] Fuzhou Univ, Natl Engn Res Ctr Chem Fertilizer Catalyst, Fuzhou 350002, Fujian, Peoples R China
关键词
Methane reforming; Synthesis gas; Ni catalyst; Noble metal; Ni oxidation; Hot spot; Carbon formation; Self-activation; Daily startup and shut down; MGO SOLID-SOLUTION; DAILY START-UP; SUPPORTED NICKEL-CATALYSTS; DOPED NI/MG(AL)O CATALYSTS; SELF-REGENERATIVE ACTIVITY; SHUT-DOWN OPERATION; DSS-LIKE OPERATION; PARTIAL OXIDATION; HYDROGEN-PRODUCTION; CARBON DEPOSITION;
D O I
10.1016/j.apcata.2011.09.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nickel is an effective component for the steam reforming of methane in terms of the catalytic activity and the catalyst cost. When Ni catalysts are applied to dry reforming, oxidative reforming, and catalytic partial oxidation, it is necessary to add the properties of high resistance to oxidation, hot spot formation, and coke deposition, to the Ni catalysts. An efficient method for giving these properties while considering the catalyst cost is the modification of Ni metal particles with small amounts of noble metals. An important point is that preparation methods can affect the structure of noble metal-Ni bimetallic particles, which is connected to the catalytic performances. The additive effects of noble metals on the catalytic performances are summarized in terms of activity, suppression of Ni oxidation, carbon formation, self-activation, and sustainability in the daily startup and shutdown operations. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 142 条
[1]   Technologies for large-scale gas conversion [J].
Aasberg-Petersen, K ;
Hansen, JHB ;
Christensen, TS ;
Dybkjaer, I ;
Christensen, PS ;
Nielsen, CS ;
Madsen, SELW ;
Rostrup-Nielsen, JR .
APPLIED CATALYSIS A-GENERAL, 2001, 221 (1-2) :379-387
[2]   Hydrogen from hydrocarbon fuels for fuel cells [J].
Ahmed, S ;
Krumpelt, M .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2001, 26 (04) :291-301
[3]  
[Anonymous], FREE ENERGY FORMATIO
[4]   The multiple roles for catalysis in the production of H2 [J].
Armor, JN .
APPLIED CATALYSIS A-GENERAL, 1999, 176 (02) :159-176
[5]   PARTIAL OXIDATION OF METHANE TO SYNTHESIS GAS-USING CARBON-DIOXIDE [J].
ASHCROFT, AT ;
CHEETHAM, AK ;
GREEN, MLH ;
VERNON, PDF .
NATURE, 1991, 352 (6332) :225-226
[6]   Rh-Ni synergy in the catalytic partial oxidation of methane:: surface phenomena and catalyst stability [J].
Basile, F ;
Fornasari, G ;
Trifirò, F ;
Vaccari, A .
CATALYSIS TODAY, 2002, 77 (03) :215-223
[7]   Partial oxidation of methane -: Effect of reaction parameters and catalyst composition on the thermal profile and heat distribution [J].
Basile, F ;
Fornasari, G ;
Trifirò, F ;
Vaccari, A .
CATALYSIS TODAY, 2001, 64 (1-2) :21-30
[8]  
Becerra A, 2002, BOL SOC CHIL QUIM, V47, P385, DOI 10.4067/S0366-16442002000400010
[9]   Surface reactivity of Pd nanoparticles supported on polycrystalline substrates as compared to thin film model catalysts:: Infrared study of CO adsorption [J].
Bertarione, S ;
Scarano, D ;
Zecchina, A ;
Johánek, V ;
Hoffmann, J ;
Schauermann, S ;
Frank, MM ;
Libuda, J ;
Rupprechter, G ;
Freund, HJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (11) :3603-3613
[10]   Design of a surface alloy catalyst for steam reforming [J].
Besenbacher, F ;
Chorkendorff, I ;
Clausen, BS ;
Hammer, B ;
Molenbroek, AM ;
Norskov, JK ;
Stensgaard, I .
SCIENCE, 1998, 279 (5358) :1913-1915