Hierarchical finite element analyses of geometrically non-linear vibration of beams and plane frames

被引:48
作者
Ribeiro, P [1 ]
机构
[1] Univ Porto, Fac Engn, DEMEGI, P-4200465 Oporto, Portugal
关键词
D O I
10.1006/jsvi.2001.3634
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Geometrically non-linear vibrations of beams and plane frameworks are analyzed by the hierarchical finite element method (HFEM). Two main points are of interest. The first is to compare polynomials, trigonometric functions and beam eigenfunctions as displacement shape functions for beam hierarchical finite elements. The second is to examine the suitability of the HFEM for time domain non-linear analyses. (C) 2001 Academic Press.
引用
收藏
页码:225 / 244
页数:20
相关论文
共 28 条
[1]   FREE-VIBRATION ANALYSIS OF A FLAT-PLATE USING THE HIERARCHICAL FINITE-ELEMENT METHOD [J].
BARDELL, NS .
JOURNAL OF SOUND AND VIBRATION, 1991, 151 (02) :263-289
[2]   Free vibration of thin, isotropic, open, conical panels [J].
Bardell, NS ;
Dunsdon, JM ;
Langley, RS .
JOURNAL OF SOUND AND VIBRATION, 1998, 217 (02) :297-320
[3]   A hierarchical functions set for predicting very high order plate bending modes with any boundary conditions [J].
Beslin, O ;
Nicolas, J .
JOURNAL OF SOUND AND VIBRATION, 1997, 202 (05) :633-655
[4]   NATURAL FREQUENCIES OF RECTANGULAR-PLATES USING CHARACTERISTIC ORTHOGONAL POLYNOMIALS IN RAYLEIGH-RITZ METHOD [J].
BHAT, RB .
JOURNAL OF SOUND AND VIBRATION, 1985, 102 (04) :493-499
[5]   INCREMENTAL TIME-SPACE FINITE STRIP METHOD FOR NON-LINEAR STRUCTURAL VIBRATIONS [J].
CHEUNG, YK ;
LAU, SL .
EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 1982, 10 (02) :239-253
[6]   ROLE OF DAMPING IN VIBRATION THEORY [J].
CRANDALL, SH .
JOURNAL OF SOUND AND VIBRATION, 1970, 11 (01) :3-&
[7]  
Crisfield M.A., 1997, NONLINEAR FINITE ELE
[8]   Geometrically nonlinear vibration analysis of thin, rectangular plates using the hierarchical finite element method .2. 1st mode of laminated plates and higher modes of isotropic and laminated plates [J].
Han, W ;
Petyt, M .
COMPUTERS & STRUCTURES, 1997, 63 (02) :309-318
[9]   Geometrically nonlinear vibration analysis of thin, rectangular plates using the hierarchical finite element method .1. The fundamental mode of isotropic plates [J].
Han, W ;
Petyt, M .
COMPUTERS & STRUCTURES, 1997, 63 (02) :295-308
[10]   Linear vibration analysis of laminated rectangular plates using the hierarchical finite element method .1. Free vibration analysis [J].
Han, WM ;
Petyt, M .
COMPUTERS & STRUCTURES, 1996, 61 (04) :705-712