MinK, MiRP1, and MiRP2 diversify Kv3.1 and Kv3.2 potassium channel gating

被引:63
作者
Lewis, A
McCrossan, ZA
Abbott, GW
机构
[1] Cornell Univ, Weill Med Coll, Div Cardiol, Dept Med, New York, NY 10021 USA
[2] Cornell Univ, Weill Med Coll, Dept Pharmacol, New York, NY 10021 USA
关键词
D O I
10.1074/jbc.M310501200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
High frequency firing in mammalian neurons requires ultra-rapid delayed rectifier potassium currents generated by homomeric or heteromeric assemblies of Kv3.1 and Kv3.2 potassium channel alpha subunits. Kv3.1 alpha subunits can also form slower activating channels by coassembling with MinK-related peptide 2 (MiRP2), a single transmembrane domain potassium channel ancillary subunit. Here, using channel subunits cloned from rat and expressed in Chinese hamster ovary cells, we show that modulation by MinK, MiRP1, and MiRP2 is a general mechanism for slowing of Kv3.1 and Kv3.2 channel activation and deactivation and acceleration of inactivation, creating a functionally diverse range of channel complexes. MiRP1 also negatively shifts the voltage dependence of Kv3.1 and Kv3.2 channel activation. Furthermore, MinK, MiRP1, and MiRP2 each form channels with Kv3.1-Kv3.2 heteromers that are kinetically distinct from one another and from MiRP/homomeric Kv3 channels. The findings illustrate a mechanism for dynamic expansion of the functional repertoire of Kv3.1 and Kv3.2 potassium currents and suggest roles for these alpha subunits outside the scope of sustained rapid neuronal firing.
引用
收藏
页码:7884 / 7892
页数:9
相关论文
共 54 条
[1]   Disease-associated mutations in KCNE potassium channel subunits (MiRPs) reveal promiscuous disruption of multiple currents and conservation of mechanism [J].
Abbott, GW ;
Goldstein, SAN .
FASEB JOURNAL, 2002, 16 (03) :390-400
[2]   MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia [J].
Abbott, GW ;
Sesti, F ;
Splawski, I ;
Buck, ME ;
Lehmann, WH ;
Timothy, KW ;
Keating, MT ;
Goldstein, SAN .
CELL, 1999, 97 (02) :175-187
[3]   Do all voltage-gated potassium channels use MiRPs? [J].
Abbott, GW ;
Goldstein, SAN ;
Sesti, F .
CIRCULATION RESEARCH, 2001, 88 (10) :981-983
[4]   MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis [J].
Abbott, GW ;
Butler, MH ;
Bendahhou, S ;
Dalakas, MC ;
Ptacek, LJ ;
Goldstein, SAN .
CELL, 2001, 104 (02) :217-231
[5]  
Baranauskas G, 1999, J NEUROSCI, V19, P6394
[6]   K(v)LQT1 and IsK (minK) proteins associate to form the I-Ks cardiac potassium current [J].
Barhanin, J ;
Lesage, F ;
Guillemare, E ;
Fink, M ;
Lazdunski, M ;
Romey, G .
NATURE, 1996, 384 (6604) :78-80
[7]  
Betancourt L, 2000, J NEUROSCI RES, V61, P646, DOI 10.1002/1097-4547(20000915)61:6<646::AID-JNR8>3.0.CO
[8]  
2-B
[9]   A potassium channel-MiRP complex controls neurosensory function in Caenorhabditis elegans [J].
Bianchi, L ;
Kwok, SM ;
Driscoll, M ;
Sesti, F .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (14) :12415-12424
[10]  
Chow A, 1999, J NEUROSCI, V19, P9332