Chiral symmetry at finite temperature: Linear versus nonlinear sigma models

被引:77
作者
Bochkarev, A [1 ]
Kapusta, J [1 ]
机构
[1] UNIV MINNESOTA,SCH PHYS & ASTRON,MINNEAPOLIS,MN 55455
来源
PHYSICAL REVIEW D | 1996年 / 54卷 / 06期
关键词
D O I
10.1103/PhysRevD.54.4066
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The linear O(N) sigma model undergoes a symmetry-restoring phase transition at finite temperature. We show that the nonlinear O(N) sigma model also undergoes a symmetry-restoring phase transition; the critical temperatures are the same when the linear model is treated in the mean field approximation and the nonlinear model is treated to leading plus subleading order in the 1/N expansion. We also carefully define and study the behavior of f(pi) and the scalar condensate at low temperatures in both models, showing that they are independent of field redefinition.
引用
收藏
页码:4066 / 4079
页数:14
相关论文
共 50 条
[1]  
Amit D. J., 1984, FIELD THEORY RENORMA
[2]   PHASE-TRANSITION IN SIGMA-MODEL AT FINITE TEMPERATURE [J].
BAYM, G ;
GRINSTEIN, G .
PHYSICAL REVIEW D, 1977, 15 (10) :2897-2912
[3]   THE SPECTRUM OF HOT HADRONIC MATTER AND FINITE-TEMPERATURE QCD SUM-RULES [J].
BOCHKAREV, AI ;
SHAPOSHNIKOV, ME .
NUCLEAR PHYSICS B, 1986, 268 (01) :220-252
[4]   SPATIAL AND TEMPORAL HADRON CORRELATORS BELOW AND ABOVE THE CHIRAL PHASE-TRANSITION [J].
BOYD, G ;
GUPTA, S ;
KARSCH, F ;
LAERMANN, E .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1994, 64 (02) :331-338
[5]   S-MATRIX FORMULATION OF STATISTICAL MECHANICS [J].
DASHEN, R ;
MA, SK ;
BERNSTEIN, HJ .
PHYSICAL REVIEW, 1969, 187 (01) :345-+
[6]   THE THERMODYNAMICS OF THE NON-LINEAR SIGMA MODEL - A TOY FOR HIGH-TEMPERATURE QCD [J].
DINE, M ;
FISCHLER, W .
PHYSICS LETTERS B, 1981, 105 (2-3) :207-211
[7]   SYMMETRY BEHAVIOR AT FINITE TEMPERATURE [J].
DOLAN, L ;
JACKIW, R .
PHYSICAL REVIEW D, 1974, 9 (12) :3320-3341
[8]  
Donoghue, 1989, Phys Rev D Part Fields, V40, P2378, DOI 10.1103/PhysRevD.40.2378
[9]  
Donoghue J. F., 1992, DYNAMICS STANDARD MO
[10]  
DRAPER T, 1993, NUCL PHYS B, V34