Experimental and in silico analyses of glycolytic flux control in bloodstream form Trypanosoma brucei

被引:126
作者
Albert, MA
Haanstra, JR
Hannaert, V
Van Roy, J
Opperdoes, FR
Bakker, BM
Michels, PAM
机构
[1] Catholic Univ Louvain, Christian de Duve Inst Cellular Pathol, Trop Dis Res Unit, B-1200 Brussels, Belgium
[2] Catholic Univ Louvain, Biochem Lab, B-1200 Brussels, Belgium
[3] Free Univ Amsterdam, Fac Earth & Life Sci, Dept Mol Cell Physiol, NL-1081 HV Amsterdam, Netherlands
关键词
D O I
10.1074/jbc.M502403200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A mathematical model of glycolysis in bloodstream form Trypanosoma brucei was developed previously on the basis of all available enzyme kinetic data (Bakker, B. M., Michels, P. A. M., Opperdoes, F. R., and Westerhoff, H. V. (1997) J. Biol. Chem. 272, 3207 - 3215). The model predicted correctly the fluxes and cellular metabolite concentrations as measured in non-growing trypanosomes and the major contribution to the flux control exerted by the plasma membrane glucose transporter. Surprisingly, a large overcapacity was predicted for hexokinase (HXK), phosphofructokinase (PFK), and pyruvate kinase (PYK). Here, we present our further analysis of the control of glycolytic flux in bloodstream form T. brucei. First, the model was optimized and extended with recent information about the kinetics of enzymes and their activities as measured in lysates of in vitro cultured growing trypanosomes. Second, the concentrations of five glycolytic enzymes (HXK, PFK, phosphoglycerate mutase, enolase, and PYK) in trypanosomes were changed by RNA interference. The effects of the knockdown of these enzymes on the growth, activities, and levels of various enzymes and glycolytic flux were studied and compared with model predictions. Data thus obtained support the conclusion from the in silico analysis that HXK, PFK, and PYK are in excess, albeit less than predicted. Interestingly, depletion of PFK and enolase had an effect on the activity ( but not, or to a lesser extent, expression) of some other glycolytic enzymes. Enzymes located both in the glycosomes ( the peroxisome-like organelles harboring the first seven enzymes of the glycolytic pathway of trypanosomes) and in the cytosol were affected. These data suggest the existence of novel regulatory mechanisms operating in trypanosome glycolysis.
引用
收藏
页码:28306 / 28315
页数:10
相关论文
共 47 条
[1]  
[Anonymous], 1997, FRONTIERS METABOLISM
[2]   Regulation and control of compartmentalized glycolysis in bloodstream form Trypanosoma brucei [J].
Bakker, BM ;
Westerhoff, HV ;
Michels, PAM .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1995, 27 (05) :513-525
[3]   Metabolic control analysis of glycolysis in trypanosomes as an approach to improve selectivity and effectiveness of drugs [J].
Bakker, BM ;
Westerhoff, HV ;
Opperdoes, FR ;
Michels, PAM .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2000, 106 (01) :1-10
[4]   What controls glycolysis in bloodstream form Trypanosoma brucei? [J].
Bakker, BM ;
Michels, PAM ;
Opperdoes, FR ;
Westerhoff, HV .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (21) :14551-14559
[5]   Glycolysis in bloodstream form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes [J].
Bakker, BM ;
Michels, PAM ;
Opperdoes, FR ;
Westerhoff, HV .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (06) :3207-3215
[6]   Compartmentation protects trypanosomes from the dangerous design of glycolysis [J].
Bakker, BM ;
Mensonides, FIC ;
Teusink, B ;
van Hoek, P ;
Michels, PAM ;
Westerhoff, HV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (05) :2087-2092
[7]   Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei [J].
Bakker, BM ;
Walsh, MC ;
ter Kuile, BH ;
Mensonides, FIC ;
Michels, PAM ;
Opperdoes, FR ;
Westerhoff, HV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (18) :10098-10103
[8]   The trypanosomiases [J].
Barrett, MP ;
Burchmore, RJS ;
Stich, A ;
Lazzari, JO ;
Frasch, AC ;
Cazzulo, JJ ;
Krishna, S .
LANCET, 2003, 362 (9394) :1469-1480
[9]   Vectors for inducible expression of toxic gene products in bloodstream and procyclic Trypanosoma brucei [J].
Biebinger, S ;
Wirtz, LE ;
Lorenz, P ;
Clayton, C .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 1997, 85 (01) :99-112
[10]   DESIGN OF GLYCOLYSIS [J].
BOITEUX, A ;
HESS, B .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 1981, 293 (1063) :5-22