Factors modulating conformational equilibria in large modular proteins: A case study with cobalamin-dependent methionine synthase

被引:36
作者
Bandarian, V
Ludwig, ML
Matthews, RG [1 ]
机构
[1] Univ Michigan, Div Biophys Res, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Inst Life Sci, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
关键词
D O I
10.1073/pnas.1133218100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the course of catalysis or signaling, large multimodular proteins often undergo conformational changes that reposition the modules with respect to one another. The mechanisms that direct the reorganization of modules in these proteins are of-considerable importance, but distinguishing alternate conformations is a challenge. Cobalamin-dependent methionine synthase (MetH) is a 136-kDa multimodular enzyme with a cobalamin chromophore; the color of the cobalamin reflects the conformation of the protein. The enzyme contains four modules and catalyzes three different methyl transfer reactions that require different arrangements of these modules. Two of these methyl transfer reactions occur during turnover, when homocysteine is converted to methionine by using a methyl group derived from methyltetrahydrofolate. The third reaction is occasionally required for reactivation of the enzyme and uses S-adenosyl-(L)-methionine as the methyl donor. The absorbance properties of the cobalamin cofactor have been exploited to assign conformations of the protein and to probe the effect of ligands and mutations on the distribution of conformers. The results imply that the methylcobalamin form of MetH exists as an ensemble of interconverting conformational states. Differential binding of substrates or products alters the distribution of conformers. Furthermore, steric conflicts disfavor conformers that juxtapose a methyl group on substrate with one on methylcobalamin. These results suggest that the methylation state of the cobalamin will influence the distribution of conformers during turnover.
引用
收藏
页码:8156 / 8163
页数:8
相关论文
共 27 条
[1]   A synthetic module for the metH gene permits facile mutagenesis of the cobalamin-binding region of Escherichia coli methionine synthase: Initial characterization of seven mutant proteins [J].
Amaratunga, M ;
Fluhr, K ;
Jarrett, JT ;
Drennan, CL ;
Ludwig, ML ;
Matthews, RG ;
Scholten, JD .
BIOCHEMISTRY, 1996, 35 (07) :2453-2463
[2]  
[Anonymous], BIOCH ASPECTS NUTR
[3]  
Bandarian V, 2002, NAT STRUCT BIOL, V9, P53
[4]   Quantitation of rate enhancements attained by the binding of cobalamin to methionine synthase [J].
Bandarian, V ;
Matthews, RG .
BIOCHEMISTRY, 2001, 40 (16) :5056-5064
[5]  
BANDARIAN V, 2003, IN PRESS METHODS ENZ
[6]   PARTICIPATION OF COB(I)ALAMIN IN THE REACTION CATALYZED BY METHIONINE SYNTHASE FROM ESCHERICHIA-COLI - A STEADY-STATE AND RAPID REACTION KINETIC-ANALYSIS [J].
BANERJEE, RV ;
FRASCA, V ;
BALLOU, DP ;
MATTHEWS, RG .
BIOCHEMISTRY, 1990, 29 (50) :11101-11109
[7]  
BANERJEE RV, 1989, J BIOL CHEM, V264, P13888
[8]   The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases [J].
Cane, DE ;
Walsh, CT .
CHEMISTRY & BIOLOGY, 1999, 6 (12) :R319-R325
[9]   Biochemistry - Harnessing the biosynthetic code: Combinations, permutations, and mutations [J].
Cane, DE ;
Walsh, CT ;
Khosla, C .
SCIENCE, 1998, 282 (5386) :63-68
[10]   The structure of the C-terminal domain of methionine synthase: Presenting S-adenosylmethionine for reductive methylation of B-12 [J].
Dixon, MM ;
Huang, S ;
Matthews, RG ;
Ludwig, M .
STRUCTURE, 1996, 4 (11) :1263-1275