The exact fitting problem in higher dimensions

被引:11
作者
Guibas, LJ
Overmars, MH
Robert, JM
机构
[1] STANFORD UNIV,DEPT COMP SCI,STANFORD,CA 94305
[2] DEC SYST RES CTR,PALO ALTO,CA
[3] UNIV UTRECHT,DEPT COMP SCI,3508 TB UTRECHT,NETHERLANDS
[4] UNIV QUEBEC,DEPT MATH & INFORMAT,CHICOUTIMI,PQ,CANADA
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 1996年 / 6卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0925-7721(95)00020-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S be a family of n points in E(d). The exact fitting problem is that of finding a hyperplane containing the maximum number of points of S. In this paper, we present an O(min{(n(d)/m(d-1)) log(n/m), n(d)}) time algorithm where m denotes the number of points in the hyperplane. This algorithm is based on upper bounds on the maximum number of incidences between families of points and families of hyperplanes in E(d) and on an algorithm to compute these incidences. We also show how the upper bound on the maximum number of incidences between families of points and families of hyperplanes can be used to derive new bounds on some well-known problems in discrete geometry.
引用
收藏
页码:215 / 230
页数:16
相关论文
共 33 条
[1]   PARTITIONING ARRANGEMENTS OF LINES .2. APPLICATIONS [J].
AGARWAL, PK .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (06) :533-573
[2]  
ANAGNOSTOU E, 1990, P INT S ALG, P310
[3]   REPEATED DISTANCES IN SPACE [J].
AVIS, D ;
ERDOS, P ;
PACH, J .
GRAPHS AND COMBINATORICS, 1988, 4 (03) :207-217
[4]   THE NUMBER OF FURTHEST NEIGHBOR PAIRS OF A FINITE PLANAR SET [J].
AVIS, D .
AMERICAN MATHEMATICAL MONTHLY, 1984, 91 (07) :417-420
[5]  
Brassard G., 1985, SIGACT News, V17, P60, DOI 10.1145/382250.382808
[6]  
Brassard G., 1988, Algorithmics: theory practice
[7]   A DETERMINISTIC VIEW OF RANDOM SAMPLING AND ITS USE IN GEOMETRY [J].
CHAZELLE, B ;
FRIEDMAN, J .
COMBINATORICA, 1990, 10 (03) :229-249
[8]   CUTTING HYPERPLANES FOR DIVIDE-AND-CONQUER [J].
CHAZELLE, B .
DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 9 (02) :145-158
[9]   THE NUMBER OF DIFFERENT DISTANCES DETERMINED BY A SET OF POINTS IN THE EUCLIDEAN PLANE [J].
CHUNG, FRK ;
SZEMEREDI, E ;
TROTTER, WT .
DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 7 (01) :1-11