Automatic ECG wave extraction in long-term recordings using Gaussian mesa function models and nonlinear probability estimators

被引:27
作者
Dubois, Remi [1 ]
Maison-Blanche, Pierre [2 ]
Quenet, Brigitte [1 ]
Dreyfus, Gerard [1 ]
机构
[1] ESPCI Paristech, CNRS, UMR 7084, Elect Lab, F-75005 Paris, France
[2] Univ Paris 07, APHP, Lariboisiere Hosp, F-75221 Paris 05, France
关键词
machine-learning; neural network; orthogonal forward regression; adaptive signal processing; cardiac wave recognition; ECG;
D O I
10.1016/j.cmpb.2007.09.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper describes the automatic extraction of the P, Q, R, S and T waves of electrocardiographic recordings (ECGs), through the combined use of a new machine-learning algorithm termed generalized orthogonal forward regression (GOFR) and of a specific parameterized function termed Gaussian mesa function (GMF). GOFR breaks up the heartbeat signal into Gaussian mesa functions, in such a way that each wave is modeled by a single GMF; the model thus generated is easily interpretable by the physician. GOFR is an essential ingredient in a global procedure that locates the R wave after some simple pre-processing, extracts the characteristic shape of each heart beat, assigns P, Q, R, S and T labels through automatic classification, discriminates normal beats (NB) from abnormal beats (AB), and extracts features for diagnosis. The efficiency of the detection of the QRS complex, and of the discrimination of NB from AB, is assessed on the MIT and AHA databases; the labeling of the P and T wave is validated on the QTDB database. (C) 2007 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:217 / 233
页数:17
相关论文
共 46 条
[1]  
*AHA DB, 1997, AHA DAT SER, V1
[2]  
[Anonymous], 1985, Eur Heart J, V6, P815
[3]   CAVIAR - A TOOL TO IMPROVE SERIAL ANALYSIS OF THE 12-LEAD ELECTROCARDIOGRAM [J].
BERG, J ;
FAYN, J ;
EDENBRANDT, L ;
LUNDH, B ;
MALMSTROM, P ;
RUBEL, P .
CLINICAL PHYSIOLOGY, 1995, 15 (05) :435-445
[4]  
Bishop CM., 1995, Neural networks for pattern recognition
[5]  
Broyden C. G., 1970, Journal of the Institute of Mathematics and Its Applications, V6, P222
[6]  
COAST DA, 1991, J ELECTROCARDIOL, V23, P184
[7]   Identification of sotalol-induced changes in repolarization with T wave area-based repolarization duration parameters [J].
Couderc, JP ;
Zareba, W ;
Moss, AJ ;
Sarapa, N ;
Morganroth, J ;
Darpo, B .
JOURNAL OF ELECTROCARDIOLOGY, 2003, 36 :115-120
[8]   ACC/AHA guidelines for ambulatory electrocardiography: Executive summary and recommendations - A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (committee to revise the guidelines for ambulatory electrocardiography) [J].
Crawford, MH ;
Berstein, SJ ;
Deedwania, PC ;
DiMarco, JP ;
Ferrick, KJ ;
Garson, A ;
Green, LA ;
Greene, HL ;
Silka, MJ ;
Stone, PH ;
Tracy, CM ;
Gibbons, RJ ;
Alpert, JS ;
Eagle, KA ;
Gardner, TJ ;
Garson, A ;
Gregoratos, G ;
Russell, RO ;
Ryan, TJ ;
Smith, SC .
CIRCULATION, 1999, 100 (08) :886-893
[9]  
Cristianini N., 2000, Intelligent Data Analysis: An Introduction
[10]  
Dreyfus G., 2005, NEURAL NETWORKS METH