Stochastic analysis of limit cycle behavior in spatially extended systems

被引:17
作者
Baras, F
机构
[1] Centre for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Campus Plaine
关键词
D O I
10.1103/PhysRevLett.77.1398
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The statistical properties of a one-dimensional reaction-diffusion system undergoing a Hopf bifurcation are studied using the master equation approach. The analysis reveals nontrivial interferences between macroscopic dynamics and mesoscopic local fluctuations that eventually wipe out any trace of homogeneous oscillations, even though the latter are asymptotically stable solutions of the deterministic equations.
引用
收藏
页码:1398 / 1401
页数:4
相关论文
共 31 条
[1]   MICROSCOPIC SIMULATION OF CHEMICAL OSCILLATIONS IN HOMOGENEOUS SYSTEMS [J].
BARAS, F ;
PEARSON, JE ;
MANSOUR, MM .
JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (08) :5747-5750
[2]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[3]   NONEQUILIBRIUM STATISTICAL-MECHANICS MODEL SHOWING SELF-SUSTAINED OSCILLATIONS [J].
BONILLA, LL .
PHYSICAL REVIEW LETTERS, 1988, 60 (14) :1398-1401
[4]   SPATIOTEMPORAL INTERMITTENCY REGIMES OF THE ONE-DIMENSIONAL COMPLEX GINZBURG-LANDAU EQUATION [J].
CHATE, H .
NONLINEARITY, 1994, 7 (01) :185-204
[5]  
CHEE MN, 1990, J CHEM PHYS, V92, P12
[6]   RENORMALIZATION GROUP APPROACH TO CHEMICAL INSTABILITIES [J].
DEWEL, G ;
WALGRAEF, D ;
BORCKMANS, P .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1977, 28 (03) :235-237
[7]   CHARACTERIZATION OF THE TRANSITION FROM DEFECT TO PHASE TURBULENCE [J].
EGOLF, DA ;
GREENSIDE, HS .
PHYSICAL REVIEW LETTERS, 1995, 74 (10) :1751-1754
[8]   STOCHASTIC-ANALYSIS OF A HOPF-BIFURCATION - MASTER EQUATION APPROACH [J].
FRAIKIN, A ;
LEMARCHAND, H .
JOURNAL OF STATISTICAL PHYSICS, 1985, 41 (3-4) :531-551
[9]  
Gardiner C. W., 1983, HDB STOCHASTIC METHO
[10]   GENERAL METHOD FOR NUMERICALLY SIMULATING STOCHASTIC TIME EVOLUTION OF COUPLED CHEMICAL-REACTIONS [J].
GILLESPIE, DT .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (04) :403-434