Circularization changes the folding transition state of the src SH3 domain

被引:46
作者
Grantcharova, VP [1 ]
Baker, D [1 ]
机构
[1] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
protein folding; folding kinetics; folding mechanism; transition state; SH3; domain;
D O I
10.1006/jmbi.2000.4352
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Native state topology has been implicated as a major determinant of protein-folding mechanisms. Here, we test experimentally the robustness of the src SH3-domain folding transition state to changes in topology by covalently constraining regions of the protein with disulfide crosslinks and then performing kinetic analysis on point mutations in the context of these modified proteins. Circularization (crosslinking the N and C termini) of the src SH3 domain makes the protein topologically symmetric and causes delocalization of structure in the transition state ensemble suggesting a change in the folding mechanism. In contrast, crosslinking a single structural element (the distal beta -hairpin) which is an essential part of the transition state, results in a protein that folds 30 times faster, but does not change the distribution of structure in the transition state. As the transition states of distantly related SH3 domains were previously found to be very similar, we conclude that the free energy landscape of this protein family contains deep features which are relatively insensitive to sequence variations but can be altered by changes in topology. (C) 2001 Academic Press.
引用
收藏
页码:555 / 563
页数:9
相关论文
共 30 条
[1]   Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures [J].
Alm, E ;
Baker, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11305-11310
[2]   A FAST ALGORITHM FOR RENDERING SPACE-FILLING MOLECULE PICTURES [J].
BACON, D ;
ANDERSON, WF .
JOURNAL OF MOLECULAR GRAPHICS, 1988, 6 (04) :219-220
[3]   SOLUTION STRUCTURE AND DNA-BINDING PROPERTIES OF A THERMOSTABLE PROTEIN FROM THE ARCHAEON SULFOLOBUS-SOLFATARICUS [J].
BAUMANN, H ;
KNAPP, S ;
LUNDBACK, T ;
LADENSTEIN, R ;
HARD, T .
NATURE STRUCTURAL BIOLOGY, 1994, 1 (11) :808-819
[4]  
Chiti F, 1999, NAT STRUCT BIOL, V6, P1005
[5]   Topological and energetic factors: What determines the structural details of the transition state ensemble and "en-route" intermediates for protein folding? An investigation for small globular proteins [J].
Clementi, C ;
Nymeyer, H ;
Onuchic, JN .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 298 (05) :937-953
[6]   How native-state topology affects the folding of dihydrofolate reductase and interleukin-1β [J].
Clementi, C ;
Jennings, PA ;
Onuchic, JN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (11) :5871-5876
[7]   First principles prediction of protein folding rates [J].
Debe, DA ;
Goddard, WA .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 294 (03) :619-625
[8]   3-DIMENSIONAL SOLUTION STRUCTURE OF PSAE FROM THE CYANOBACTERIUM SYNECHOCOCCUS SP STRAIN PCC-7002, A PHOTOSYSTEM-I PROTEIN THAT SHOWS STRUCTURAL HOMOLOGY WITH SH3 DOMAINS [J].
FALZONE, CJ ;
KAO, YH ;
ZHAO, JD ;
BRYANT, DA ;
LECOMTE, JTJ .
BIOCHEMISTRY, 1994, 33 (20) :6052-6062
[10]   A theoretical search for folding/unfolding nuclei in three-dimensional protein structures [J].
Galzitskaya, OV ;
Finkelstein, AV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11299-11304