Human DNA topoisomerase I: relaxation, roles, and damage control

被引:177
作者
Leppard, JB [1 ]
Champoux, JJ [1 ]
机构
[1] Univ Washington, Sch Med, Dept Microbiol, Seattle, WA 98195 USA
关键词
D O I
10.1007/s00412-005-0345-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human DNA topoisomerase I is an essential enzyme involved in resolving the torsional stress associated with DNA replication, transcription, and chromatin condensation. The catalytic cycle of the enzyme consists of DNA cleavage to form a covalent enzyme-DNA intermediate, DNA relaxation, and finally, religation of the phosphate backbone to restore the continuity of the DNA. Structure/function studies have elucidated a flexible enzyme that relaxes DNA through coordinated, controlled movements of distinct enzyme domains. The cellular roles of topoisomerase I are apparent throughout the nucleus, but the concentration of processes acting on ribosomal DNA results in topoisomerase I accumulation in the nucleolus. Although the activity of topoisomerase I is required in these processes, the enzyme can also have a deleterious effect on cells. In the event that the final religation step of the reaction cycle is prevented, the covalent topoisomerase I-DNA intermediate becomes a toxic DNA lesion that must be repaired. The complexities of the relaxation reaction, the cellular roles, and the pathways that must exist to repair topoisomerase I-mediated DNA damage highlight the importance of continued study of this essential enzyme.
引用
收藏
页码:75 / 85
页数:11
相关论文
共 91 条
[1]  
ALSNER J, 1992, J BIOL CHEM, V267, P12408
[2]   Accumulation of c-Myc and proteasomes at the nucleoli of cells containing elevated c-Myc protein levels [J].
Arabi, A ;
Rustum, C ;
Hallberg, E ;
Wright, APH .
JOURNAL OF CELL SCIENCE, 2003, 116 (09) :1707-1717
[3]   Distinct in vivo dynamics of vertebrate SUMO paralogues [J].
Ayaydin, F ;
Dasso, M .
MOLECULAR BIOLOGY OF THE CELL, 2004, 15 (12) :5208-5218
[4]   CELL-CYCLE ANALYSIS OF AMOUNT AND DISTRIBUTION OF NUCLEAR-DNA TOPOISOMERASE-I AS DETERMINED BY FLUORESCENCE DIGITAL IMAGING MICROSCOPY [J].
BAKER, SD ;
WADKINS, RM ;
STEWART, CF ;
BECK, WT ;
DANKS, MK .
CYTOMETRY, 1995, 19 (02) :134-145
[5]   The CHO XRCC1 mutant, EM9, deficient in DNA ligase III activity, exhibits hypersensitivity to camptothecin independent of DNA replication [J].
Barrows, LR ;
Holden, JA ;
Anderson, M ;
D'Arpa, P .
MUTATION RESEARCH-DNA REPAIR, 1998, 408 (02) :103-110
[6]  
Bauer PI, 2000, INT J MOL MED, V5, P533
[7]   NUCLEOTIDE-SEQUENCE PREFERENCE AT RAT-LIVER AND WHEAT-GERM TYPE-1 DNA TOPOISOMERASE BREAKAGE SITES IN DUPLEX SV40 DNA [J].
BEEN, MD ;
BURGESS, RR ;
CHAMPOUX, JJ .
NUCLEIC ACIDS RESEARCH, 1984, 12 (07) :3097-3114
[8]   Identification of a nucleolin binding site in human topoisomerase I [J].
Bharti, AK ;
Olson, MOJ ;
Kufe, DW ;
Rubin, EH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (04) :1993-1997
[9]   A HIGH-AFFINITY TOPOISOMERASE-1 BINDING SEQUENCE IS CLUSTERED AT DNAASE-1 HYPERSENSITIVE SITES IN TETRAHYMENA R-CHROMATIN [J].
BONVEN, BJ ;
GOCKE, E ;
WESTERGAARD, O .
CELL, 1985, 41 (02) :541-551
[10]  
Buckwalter CA, 1996, CANCER RES, V56, P1674