Archaeoglobus fulgidus RNase HII in DNA replication:: Enzymological functions and activity regulation via metal cofactors

被引:29
作者
Chai, Q
Qiu, J
Chapados, BR
Shen, BH
机构
[1] City Hope Natl Med Ctr, Dept Cell & Tumor Biol, Duarte, CA 91010 USA
[2] Scripps Res Inst, Skaggs Inst Chem Biol MB4, Dept Mol Biol, La Jolla, CA 92037 USA
关键词
D O I
10.1006/bbrc.2001.5523
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNA primer removal during DNA replication is dependent on ribonucleotide- and structure-specific RNase H and FEN-1 nuclease activities. A specific RNase H involved in this reaction has long been sought. RNase HII is the only open reading frame in Archaeoglobus fulgidus genome, while multiple RNases H exist in eukaryotic cells. Data presented here show that RNase HII from A. fulgidus (aRNase HII) specifically recognizes RNA-DNA junctions and generates products suited for the FEN-1 nuclease, indicating its role in DNA replication. Biochemical characterization of aRNase HII activity in the presence of various divalent metal ions reveals a broad metal tolerance with a preference for Mg2+ and Mn2+. Combined mutagenesis, biochemical competitions, and metal-dependent activity assays further clarify the functions of the identified amino acid residues in substrate binding or catalysis, respectively. These experiments also reveal that Asp129 form a second-metal binding site, and thus contribute to activity attenuation. (C) 2001 Academic Press.
引用
收藏
页码:1073 / 1081
页数:9
相关论文
共 31 条
[1]   The absence of ribonuclease H1 or H2 alters the sensitivity of Saccharomyces cerevisiae to hydroxyurea, caffeine and ethyl methanesulphonate:: implications for roles of RNases H in DNA replication and repair [J].
Arudchandran, A ;
Cerritelli, SM ;
Narimatsu, SK ;
Itaya, M ;
Shin, DY ;
Shimada, Y ;
Crouch, RJ .
GENES TO CELLS, 2000, 5 (10) :789-802
[2]  
BUSEN W, 1977, EUR J BIOCHEM, V255, P9434
[3]   Structural biochemistry of a type 2 RNase H: RNA primer recognition and removal during DNA replication [J].
Chapados, BR ;
Chai, Q ;
Hosfield, DJ ;
Qiu, JZ ;
Shen, BH ;
Tainer, JA .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (02) :541-556
[4]  
CROUCH R J, 1990, New Biologist, V2, P771
[5]  
Crouch R. J., 1982, NUCLEASES, P211
[6]   Cloning of the cDNA encoding the large subunit of human RNase HI, a homologue of the prokaryotic RNase HII [J].
Frank, P ;
Braunshofer-Reiter, C ;
Wintersberger, U ;
Grimm, R ;
Büsen, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (22) :12872-12877
[7]   Cloning, subcellular localization and functional expression of human RNase HII [J].
Frank, P ;
Braunshofer-Reiter, C ;
Pöltl, A ;
Holzmann, K .
BIOLOGICAL CHEMISTRY, 1998, 379 (12) :1407-1412
[8]   Yeast RNase H(35) is the counterpart of the mammalian RNase HI, and is evolutionarily related to prokaryotic RNase HII [J].
Frank, P ;
Braunshofer-Reiter, C ;
Wintersberger, U .
FEBS LETTERS, 1998, 421 (01) :23-26
[9]   Co-crystal of Escherichia coli RNase HI with Mn2+ ions reveals two divalent metals bound in the active site [J].
Goedken, ER ;
Marqusee, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (10) :7266-7271
[10]  
Haruki M, 1998, J BACTERIOL, V180, P6207