Spectroscopic changes during a single turnover of biotin synthase: Destruction of a [2Fe-2S] cluster accompanies sulfur insertion

被引:125
作者
Ugulava, NB
Sacanell, CJ
Jarrett, JT
机构
[1] Univ Penn, Sch Med, Dept Biochem & Biophys, Philadelphia, PA 19104 USA
[2] Univ Penn, Sch Med, Johnson Res Fdn, Philadelphia, PA 19104 USA
关键词
D O I
10.1021/bi010463x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Biotin synthase catalyzes the insertion of a sulfur atom between the saturated C6 and C9 carbons of dethiobiotin. Catalysis requires AdoMet and flavodoxin and generates 5 ' -deoxyadenosine and methionine, suggesting that biotin synthase is an AdoMet-dependent radical enzyme. Biotin synthase (BioB) is aerobically purified as a dimer of 38.4 kDa monomers that contains I - 1.5 [2Fe-2S](2+) clusters per monomer and can be reconstituted with exogenous iron, sulfide, and reductants to contain up to two [4Fe-4S] clusters per monomer. The iron-sulfur clusters may play a dual role in biotin synthase: a reduced iron-sulfur cluster is probably involved in radical generation by mediating the reductive cleavage of AdoMet, while recent in vitro labeling studies suggest that an iron-sulfur cluster also serves as the immediate source of sulfur for the biotin thioether ring. Consistent with this dual role for iron-sulfur clusters in biotin synthase, we have found that the protein is stable, containing one [2Fe-2S](2+) cluster and one [4Fe-4S](2+) cluster per monomer. In the present study, we demonstrate that this mixed cluster state is essential for optimal activity. We follow changes in the Fe and S content and UV/visible and EPR spectra of the enzyme during a single turnover and conclude that during catalysis the [4Fe-4S](2+) cluster is preserved while the [2Fe-2S](2+) cluster is destroyed. We propose a mechanism fur incorporation of sulfur into dethiobiotin in which a sulfur atom is oxidatively extracted from the [2Fe-2S](2+) cluster.
引用
收藏
页码:8352 / 8358
页数:7
相关论文
共 34 条
[1]   IscU as a scaffold for iron-sulfur cluster biosynthesis: Sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU [J].
Agar, JN ;
Krebs, C ;
Frazzon, J ;
Huynh, BH ;
Dean, DR ;
Johnson, MK .
BIOCHEMISTRY, 2000, 39 (27) :7856-7862
[2]  
ANDERSEN KB, 1977, J BIOL CHEM, V252, P4151
[3]   BIOTIN BIOSYNTHESIS IN HIGHER-PLANT CELLS - IDENTIFICATION OF INTERMEDIATES [J].
BALDET, P ;
GERBLING, H ;
AXIOTIS, S ;
DOUCE, R .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1993, 217 (01) :479-485
[5]   MioC is an FMN-binding protein that is essential for Escherichia coli biotin synthase activity in vitro [J].
Birch, OM ;
Hewitson, KS ;
Fuhrmann, M ;
Burgdorf, K ;
Baldwin, JE ;
Roach, PL ;
Shaw, NM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (41) :32277-32280
[6]   BIOTIN SYNTHASE FROM ESCHERICHIA-COLI, AN INVESTIGATION OF THE LOW-MOLECULAR-WEIGHT AND PROTEIN-COMPONENTS REQUIRED FOR ACTIVITY IN-VITRO [J].
BIRCH, OM ;
FUHRMANN, M ;
SHAW, NM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (32) :19158-19165
[7]   Pyruvate formate-lyase-activating enzyme:: Strictly anaerobic isolation yields active enzyme containing a [3Fe-4S]+ cluster [J].
Broderick, JB ;
Henshaw, TF ;
Cheek, J ;
Wojtuszewski, K ;
Smith, SR ;
Trojan, MR ;
McGhan, RM ;
Kopf, A ;
Kibbey, M ;
Broderick, WE .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2000, 269 (02) :451-456
[8]   Biotin synthase mechanism:: on the origin of sulphur [J].
Bui, BTS ;
Florentin, D ;
Fournier, F ;
Ploux, O ;
Méjean, A ;
Marquet, A .
FEBS LETTERS, 1998, 440 (1-2) :226-230
[9]   Mossbauer studies of Escherichia coli biotin synthase:: evidence for reversible interconversion between [2Fe-2S]2+ and [4Fe-4S]2+ clusters [J].
Bui, BTS ;
Florentin, D ;
Marquet, A ;
Benda, R ;
Trautwein, AX .
FEBS LETTERS, 1999, 459 (03) :411-414
[10]  
Bui BTS, 2000, EUR J BIOCHEM, V267, P2688