Operational modal analysis in the presence of harmonic excitation

被引:142
作者
Mohanty, P [1 ]
Rixen, DJ [1 ]
机构
[1] Delft Univ Technol, Fac Design Engn & Prod, NL-2628 CD Delft, Netherlands
关键词
D O I
10.1016/S0022-460X(03)00485-1
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Modal operational analysis methods are procedures to identify modal parameters of structures from the response to unknown random excitations existing on buildings and in machines during operation. In many practical cases, in addition to the random loads, harmonic excitations are also present due for instance to rotating components. If the frequency of the harmonic component of the input is close to an eigenfrequency of the system, operational modal analysis procedures fail to identify the modal parameters accurately. Therefore, we propose a modification of the least-square complex exponential identification procedure to include explicitly the harmonic component. In that way, the modal parameters can be identified properly. We illustrate the efficiency of the proposed approach on the example of a beam structure excited by multi-harmonic loads superposed on random excitation. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:93 / 109
页数:17
相关论文
共 10 条
[1]  
BRINCKER R, 2000, INT MOD AN C IMAC SA, V18, P1649
[2]  
Brown D.L., 1979, Parameter Estimation Techniques for Modal Analysis, DOI [10.4271/790221, DOI 10.4271/790221]
[3]  
Ewins DJ, 2000, MODAL TESTING THEORY
[4]  
Farhat C., 2002, ENCY VIBRATION, P710
[5]  
Geradin M., 2015, MECH VIBRATIONS THEO
[6]   Modal testing and analysis of structures under operational conditions: Industrial applications [J].
Hermans, L ;
Van der Auweraer, H .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1999, 13 (02) :193-216
[7]  
JAMES GH, 1995, MODAL ANAL, V10, P260
[8]  
JAMES GH, 1992, INT MOD AN C IMAC SA, V10
[9]  
LAGO T, 1997, SVIBS S STOCKH
[10]  
Maia NMM., 1997, Theoretical and experimental modal analysis