The role of lysine 529, a conserved residue of the acyl-adenylate-forming enzyme superfamily, in firefly luciferase

被引:101
作者
Branchini, BR [1 ]
Murtiashaw, MH [1 ]
Magyar, RA [1 ]
Anderson, SM [1 ]
机构
[1] Connecticut Coll, Dept Chem, New London, CT 06320 USA
关键词
D O I
10.1021/bi9928804
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Firefly luciferase catalyzes the highly efficient emission of yellow-green light from the substrates luciferin, Mg-ATP, and oxygen in a two-step process. The enzyme first catalyzes the adenylation of the carboxylate substrate luciferin with Mg-ATP followed by the oxidation of the acyl-adenylate to the light-emitting oxyluciferin product. The beetle luciferases are members of a large family of nonbioluminescent proteins that catalyze reactions of ATP with carboxylate substrates to form acyl-adenylates. Formation of the luciferase-luciferyl-AMP complex is a specific example of the chemistry common to this enzyme family. Site-directed mutants at positions Lys529, Thr343, and His245 were studied to determine the effects of the amino acid changes at these positions on the individual luciferase-catalyzed adenylation and oxidation reactions. The results suggest that Lys529 is a critical residue for effective substrate orientation and that it provides favorable polar interactions important for transition state stabilization leading to efficient adenylate production. These findings as well as those with the Thr343 and His245 mutants are interpreted in the context of the firefly luciferase X-ray structures and computational-based models of the active site.
引用
收藏
页码:5433 / 5440
页数:8
相关论文
共 30 条
[1]   THE FUNCTION OF COENZYME-A IN LUMINESCENCE [J].
AIRTH, RL ;
RHODES, WC ;
MCELROY, WD .
BIOCHIMICA ET BIOPHYSICA ACTA, 1958, 27 (03) :519-532
[2]   ANCESTRY OF THE 4-CHLOROBENZOATE DEHALOGENASE - ANALYSIS OF AMINO-ACID-SEQUENCE IDENTITIES AMONG FAMILIES OF ACYL-ADENYL LIGASES, ENOYL-COA HYDRATASES ISOMERASES, AND ACYL-COA THIOESTERASES [J].
BABBITT, PC ;
KENYON, GL ;
MARTIN, BM ;
CHAREST, H ;
SLYVESTRE, M ;
SCHOLTEN, JD ;
CHANG, KH ;
LIANG, PH ;
DUNAWAYMARIANO, D .
BIOCHEMISTRY, 1992, 31 (24) :5594-5604
[3]   Site-directed mutagenesis of histidine 245 in firefly luciferase: A proposed model of the active site [J].
Branchini, BR ;
Magyar, RA ;
Murtiashaw, MH ;
Anderson, SM ;
Zimmer, M .
BIOCHEMISTRY, 1998, 37 (44) :15311-15319
[4]   Site-directed mutagenesis of firefly luciferase active site amino acids: A proposed model for bioluminescence color [J].
Branchini, BR ;
Magyar, RA ;
Murtiashaw, MH ;
Anderson, SM ;
Helgerson, LC ;
Zimmer, M .
BIOCHEMISTRY, 1999, 38 (40) :13223-13230
[5]  
CAMPBELL AK, 1993, FLUORESCENT LUMINESC, P58
[6]   Acyl-adenylate motif of the acyl-adenylate/thioester-forming enzyme superfamily:: A site-directed mutagenesis study with the Pseudomonas sp. strain CBS3 4-chlorobenzoate:coenzyme A ligase [J].
Chang, KH ;
Xiang, H ;
Dunaway-Mariano, D .
BIOCHEMISTRY, 1997, 36 (50) :15650-15659
[7]   Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S [J].
Conti, E ;
Stachelhaus, T ;
Marahiel, MA ;
Brick, P .
EMBO JOURNAL, 1997, 16 (14) :4174-4183
[8]   Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes [J].
Conti, E ;
Franks, NP ;
Brick, P .
STRUCTURE, 1996, 4 (03) :287-298
[9]  
DELUCA M, 1976, ADV ENZYMOL RAMB, V44, P37
[10]   KINETICS OF FIREFLY LUCIFERASE CATALYZED REACTIONS [J].
DELUCA, M ;
MCELROY, WD .
BIOCHEMISTRY, 1974, 13 (05) :921-925