Objective Quality Assessment of Screen Content Images by Uncertainty Weighting

被引:75
作者
Fang, Yuming [1 ]
Yan, Jiebin [1 ]
Liu, Jiaying [2 ]
Wang, Shiqi [3 ]
Li, Qiaohong [4 ]
Guo, Zongming [2 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Informat Technol, Nanchang 330013, Jiangxi, Peoples R China
[2] Peking Univ, Inst Comp Sci & Technol, Beijing 100080, Peoples R China
[3] Nanyang Technol Univ, Rapid Rich Object Search Lab, Singapore 637553, Singapore
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 637553, Singapore
基金
中国国家自然科学基金;
关键词
Visual quality assessment; screen content image; full-reference quality assessment; uncertainty weighting; STRUCTURAL SIMILARITY; CONTRAST; INFORMATION; LUMINANCE; GRADIENT;
D O I
10.1109/TIP.2017.2669840
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel full-reference objective quality assessment metric for screen content images (SCIs) by structure features and uncertainty weighting (SFUW). The input SCI is first divided into textual and pictorial regions. The visual quality of textual regions is estimated based on perceptual structural similarity, where the gradient information is adopted as the structural feature. To predict the visual quality of pictorial regions in SCIs, we extract the structural features and luminance features for similarity computation between the reference and distorted pictorial patches. To obtain the final visual quality of SCI, we design an uncertainty weighting method by perceptual theories to fuse the visual quality of textual and pictorial regions effectively. Experimental results show that the proposed SFUW can obtain better performance of visual quality prediction for SCIs than other existing ones.
引用
收藏
页码:2016 / 2027
页数:12
相关论文
共 54 条
[1]   VSNR: A wavelet-based visual signal-to-noise ratio for natural images [J].
Chandler, Damon M. ;
Hemami, Sheila S. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (09) :2284-2298
[2]  
Chang TH, 2011, 29TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, P2163
[3]  
Cuiling Lan, 2015, 2015 Visual Communications and Image Processing (VCIP), P1, DOI 10.1109/VCIP.2015.7457915
[4]   No-Reference Quality Assessment of Contrast-Distorted Images Based on Natural Scene Statistics [J].
Fang, Yuming ;
Ma, Kede ;
Wang, Zhou ;
Lin, Weisi ;
Fang, Zhijun ;
Zhai, Guangtao .
IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (07) :838-842
[5]   Local luminance and contrast in natural images [J].
Frazor, Robert A. ;
Geisler, Wilson S. .
VISION RESEARCH, 2006, 46 (10) :1585-1598
[6]   No-Reference Image Sharpness Assessment in Autoregressive Parameter Space [J].
Gu, Ke ;
Zhai, Guangtao ;
Lin, Weisi ;
Yang, Xiaokang ;
Zhang, Wenjun .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (10) :3218-3231
[7]   Toward Scalable Systems for Big Data Analytics: A Technology Tutorial [J].
Hu, Han ;
Wen, Yonggang ;
Chua, Tat-Seng ;
Li, Xuelong .
IEEE ACCESS, 2014, 2 :652-687
[8]   Compress Compound Images in H.264/MPGE-4 AVC by Exploiting Spatial Correlation [J].
Lan, Cuiling ;
Shi, Guangming ;
Wu, Feng .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (04) :946-957
[9]   Most apparent distortion: full-reference image quality assessment and the role of strategy [J].
Larson, Eric C. ;
Chandler, Damon M. .
JOURNAL OF ELECTRONIC IMAGING, 2010, 19 (01)
[10]   Fast Mode Decision Using Inter-View and Inter-Component Correlations for Multiview Depth Video Coding [J].
Lei, Jianjun ;
Sun, Jing ;
Pan, Zhaoqing ;
Kwong, Sam ;
Duan, Jinhui ;
Hou, Chunping .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2015, 11 (04) :978-986