Mossbauer spectra as a "fingerprint" in tin-lithium compounds: Applications to Li-ion batteries

被引:82
作者
Robert, F.
Lippens, P. E.
Olivier-Foureade, J.
Jumas, J. -C.
Gillot, F.
Morcrette, M.
Tarascon, J. -M.
机构
[1] Univ Montpellier 2, CNRS, UMR 5072, Lab Agregats Mol & Mat Inorgan, F-34095 Montpellier 5, France
[2] Univ Picardie Jules Verne, CNRS, UMR 6007, Lab React & Chim Solides, F-80039 Amiens, France
关键词
Li-ion batteries; Li-Sn alloys; Mossbauer spectroscopy;
D O I
10.1016/j.jssc.2006.10.026
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Several Li-Sn crystalline phases, i.e. Li2Sn5, LiSn, Li7Sn3, Li5Sn2, Li13Sn5, Li7Sn2 and Li22Sn5 were prepared by ball-milling and characterized by X-ray powder diffraction and Sn-119 Mossbauer spectroscopy. The analysis of the Mossbauer hyperfine parameters, i.e. isomer shift (delta) and quadrupole splitting (Delta), made it possible to define two types of Li-Sn compounds: the Sn-richest compounds (Li2Sn5, LiSn) and the Li-richest compounds (Li7Sn3, Li5Sn2, L13Sn5, Li7Sn2, Li22Sn5). The isomer shift values ranged from 2.56 to 2.38 mms(-1) for Li2Sn5, LiSn and from 2.07 to 1.83 mms(-1) for Li7Sn3, Li5Sn2, Li13Sn5, Li7Sn2 and Li22Sn5, respectively. A Delta-delta correlation diagram is introduced in order to identify the different phases observed during the electrochemical process of new Sn-based materials. This approach is illustrated by the identification of the phases obtained at the end of the first discharge of eta-Cu6Sn5 and SnB0.6P0.4O2.9. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:339 / 348
页数:10
相关论文
共 48 条
  • [1] THE ELECTRIC-FIELD GRADIENT DIRECTION IN TIN METAL
    BAHGAT, AA
    [J]. PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1980, 97 (02): : K129 - K132
  • [2] Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?
    Besenhard, JO
    Yang, J
    Winter, M
    [J]. JOURNAL OF POWER SOURCES, 1997, 68 (01) : 87 - 90
  • [3] Thin-film crystalline SnO2-lithium electrodes
    Brousse, T
    Retoux, R
    Herterich, U
    Schleich, DM
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) : 1 - 4
  • [4] Electrochemical lithiation reactions of Cu6Sn5 and their reaction products
    Choi, W
    Lee, JY
    Lim, HS
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (08) : 816 - 820
  • [5] Deeper insight on the lithium reaction mechanism with amorphous tin composite oxides
    Chouvin, J
    Vicente, CP
    Olivier-Fourcade, J
    Jumas, JC
    Simon, B
    Biensan, P
    [J]. SOLID STATE SCIENCES, 2004, 6 (01) : 39 - 46
  • [6] 119Sn Mossbauer study of LixSn alloys prepared electrochemically
    Chouvin, J
    Olivier-Fourcade, J
    Jumas, JC
    Simon, B
    Godiveau, O
    [J]. CHEMICAL PHYSICS LETTERS, 1999, 308 (5-6) : 413 - 420
  • [7] SnO reduction in lithium cells:: study by X-ray absorption, 119Sn Mossbauer spectroscopy and X-ray diffraction
    Chouvin, J
    Olivier-Fourcade, J
    Jumas, JC
    Simon, B
    Biensan, PH
    Madrigal, FJF
    Tirado, JL
    Vicente, CP
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2000, 494 (02) : 136 - 146
  • [8] CHOUVIN J, 2001, THESIS MONTPELLIER
  • [9] Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites
    Courtney, IA
    Dahn, JR
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) : 2045 - 2052
  • [10] Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass
    Courtney, IA
    Dahn, JR
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (09) : 2943 - 2948