A note on fitting a marginal model to mixed effects log-linear regression data via GEE

被引:16
作者
Gromping, U
机构
[1] Fachbereich Statistik, Universität Dortmund
关键词
correct specification; GEE; GLMM; log-linear regression; marginal models; population-averaged effects; random effects; subject-specific effects;
D O I
10.2307/2533162
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Marginal generalized linear models for correlated data are often fit by generalized estimating equations (Liang, K. Y. and Zeger, S. L., 1986, Biometrika 73, 13-22), which requires the marginal expectation to be correctly specified while the covariance structure is allowed to be misspecified. This note is concerned with the correct specification of the marginal mean for data from a mixed log-linear regression model and the relationship between the true subject-specific parameters and the true marginal parameters.
引用
收藏
页码:280 / 285
页数:6
相关论文
共 15 条
[1]   RANDOM EFFECTS IN GENERALIZED LINEAR-MODELS AND THE EM ALGORITHM [J].
ANDERSON, DA ;
HINDE, JP .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1988, 17 (11) :3847-3856
[2]   APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS [J].
BRESLOW, NE ;
CLAYTON, DG .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :9-25
[3]  
Diggle P., 2002, Analysis of longitudinal data
[4]   REML ESTIMATION WITH EXACT COVARIANCE IN THE LOGISTIC MIXED-MODEL [J].
DRUM, ML ;
MCCULLAGH, P .
BIOMETRICS, 1993, 49 (03) :677-689
[5]  
Engel B., 1994, Stat Neerl, V48, P1, DOI [DOI 10.1111/J.1467-9574.1994.TB01428.X, 10.1111/j.1467-9574.1994.tb01428.x]
[6]   LONGITUDINAL DATA-ANALYSIS USING GENERALIZED LINEAR-MODELS [J].
LIANG, KY ;
ZEGER, SL .
BIOMETRIKA, 1986, 73 (01) :13-22
[7]  
McCullagh P., 1989, GEN LINEAR MODELS, DOI [DOI 10.1007/978-1-4899-3242-6, 10.1201/9780203753736, DOI 10.2307/2347392]
[8]   A COMPARISON OF CLUSTER-SPECIFIC AND POPULATION-AVERAGED APPROACHES FOR ANALYZING CORRELATED BINARY DATA [J].
NEUHAUS, JM ;
KALBFLEISCH, JD ;
HAUCK, WW .
INTERNATIONAL STATISTICAL REVIEW, 1991, 59 (01) :25-35
[9]  
NEUHAUS JM, 1993, BIOMETRIKA, V80, P807, DOI 10.2307/2336872
[10]  
SCHALL R, 1991, BIOMETRIKA, V78, P719