Crystal structure of a Kir3.1-prokaryotic Kir channel chimera

被引:235
作者
Nishida, Motohiko
Cadene, Martine
Chait, Brian T.
MacKinnon, Roderick
机构
[1] Rockefeller Univ, Howard Hughes Med Inst, Lab Mol Neurobiol & Biophys, New York, NY 10065 USA
[2] Rockefeller Univ, Lab Mass Spectrometry & Gaseous Ion Chem, New York, NY 10021 USA
关键词
crystal structure; gating; G-protein-gated inward rectifier; potassium channel; selectivity filter;
D O I
10.1038/sj.emboj.7601828
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Kir3.1 K+ channel participates in heart rate control and neuronal excitability through G-protein and lipid signaling pathways. Expression in Escherichia coli has been achieved by replacing three fourths of the transmembrane pore with the pore of a prokaryotic Kir channel, leaving the cytoplasmic pore and membrane interfacial regions of Kir3.1 origin. Two structures were determined at 2.2A. The selectivity filter is identical to the Streptomyces lividans K+ channel within error of measurement (r.m.s.d. < 0.2 angstrom), suggesting that K+ selectivity requires extreme conservation of three-dimensional structure. Multiple K+ ions reside within the pore and help to explain voltage-dependent Mg2+ and polyamine blockade and strong rectification. Two constrictions, at the inner helix bundle and at the apex of the cytoplasmic pore, may function as gates: in one structure the apex is open and in the other, it is closed. Gating of the apex is mediated by rigid-body movements of the cytoplasmic pore subunits. Phosphatidylinositol 4,5-biphosphate-interacting residues suggest a possible mechanism by which the signaling lipid regulates the cytoplasmic pore.
引用
收藏
页码:4005 / 4015
页数:11
相关论文
共 63 条
[1]   CLONING OF THE BETA-CELL HIGH-AFFINITY SULFONYLUREA RECEPTOR - A REGULATOR OF INSULIN-SECRETION [J].
AGUILARBRYAN, L ;
NICHOLS, CG ;
WECHSLER, SW ;
CLEMENT, JP ;
BOYD, AE ;
GONZALEZ, G ;
HERRERASOSA, H ;
NGUY, K ;
BRYAN, J ;
NELSON, DA .
SCIENCE, 1995, 268 (5209) :423-426
[2]  
[Anonymous], ACTA CRYSTALLOGR D
[3]   Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit [J].
Antcliff, JF ;
Haider, S ;
Proks, P ;
Sansom, MSP ;
Ashcroft, FM .
EMBO JOURNAL, 2005, 24 (02) :229-239
[4]   KATP channels and insulin secretion:: a key role in health and disease [J].
Ashcroft, FM .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2006, 34 :243-246
[5]   PIP2 and PIP as determinants for ATP inhibition of KATP channels [J].
Baukrowitz, T ;
Schulte, U ;
Oliver, D ;
Herlitze, S ;
Krauter, T ;
Tucker, SJ ;
Ruppersberg, JP ;
Fakler, B .
SCIENCE, 1998, 282 (5391) :1141-1144
[6]   Defective potassium channel Kir2.1 trafficking underlies Andersen-Tawil syndrome [J].
Bendahhou, S ;
Donaldson, MR ;
Plaster, NM ;
Tristani-Firouzi, M ;
Fu, YH ;
Ptácek, LJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (51) :51779-51785
[7]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[8]   A threonine residue (Thr71) at the intracellular end of the M1 helix plays a critical role in the gating of Kir6.2 channels by intracellular ATP and protons [J].
Cui, N ;
Wu, J ;
Xu, H ;
Wang, R ;
Rojas, A ;
Piao, H ;
Mao, J ;
Abdulkadir, L ;
Li, L ;
Jiang, C .
JOURNAL OF MEMBRANE BIOLOGY, 2003, 192 (02) :111-122
[9]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[10]   Characteristic interactions with phosphatidylinositol 4,5-bisphosphate determine regulation of Kir channels by diverse modulators [J].
Du, XO ;
Zhang, HL ;
Lopes, C ;
Mirshahi, T ;
Rohacs, T ;
Logothetis, DE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (36) :37271-37281