The solution structure of human mitochondria fission protein Fis1 reveals a novel TPR-like helix bundle

被引:135
作者
Suzuki, M
Jeong, SY
Karbowski, M
Youle, RJ
Tjandra, N
机构
[1] NHLBI, Biophys Chem Lab, Bethesda, MD 20892 USA
[2] NINDS, Biochem Sect, Surg Neurol Branch, NIH, Bethesda, MD 20892 USA
关键词
mitochondria; NMR; dynamin; tom20; tom70;
D O I
10.1016/j.jmb.2003.09.064
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fis1 in yeast localizes to the outer mitochondrial membrane and facilitates mitochondrial fission by forming protein complexes with Dnm1 and Mdv1. Fis1 orthologs exist in higher eukaryotes, suggesting that they are functionally conserved. In the present study, we cloned the human Fis1 ortholog that was predicted in a database, and determined the protein structure using NMR spectroscopy. Following a flexible N-terminal tail, six alpha-helices connected with short loops construct a single core domain. The C-terminal tail containing a transmembrane segment appears to be disordered. In the core domain, each of two sequentially adjacent helices forms a hairpin-like conformation, resulting in a six helix assembly forming a slightly twisted slab similar to that of a tandem array of tetratricopeptide repeat (TPR) motif folds. Within this TPR-like core domain, no significant sequence similarity to the typical TPR motif is found. The structural analogy to the TPR-containing proteins suggests that Fis1 binds to other proteins at its concave hydrophobic surface. A simple composition of Fis1 comprised of a binding domain and a transmembrane segment indicates that the protein may function as a molecular adaptor on the mitochondrial outer membrane. In HeLa cells, however, increased levels in mitochondria-associated Fis1 did not result in mitochondrial translocation of Drp1, a potential binding partner of Fis1 implicated in the regulation of mitochondrial fission, suggesting that the interaction between Drp1 and Fis1 is regulated. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:445 / 458
页数:14
相关论文
共 50 条
[1]   Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20 [J].
Abe, Y ;
Shodai, T ;
Muto, T ;
Mihara, K ;
Torii, H ;
Nishikawa, S ;
Endo, T ;
Kohda, D .
CELL, 2000, 100 (05) :551-560
[2]   BACKBONE DYNAMICS OF CALMODULIN STUDIED BY N-15 RELAXATION USING INVERSE DETECTED 2-DIMENSIONAL NMR-SPECTROSCOPY - THE CENTRAL HELIX IS FLEXIBLE [J].
BARBATO, G ;
IKURA, M ;
KAY, LE ;
PASTOR, RW ;
BAX, A .
BIOCHEMISTRY, 1992, 31 (23) :5269-5278
[3]   METHODOLOGICAL ADVANCES IN PROTEIN NMR [J].
BAX, A ;
GRZESIEK, S .
ACCOUNTS OF CHEMICAL RESEARCH, 1993, 26 (04) :131-138
[4]   H-1-H-1 CORRELATION VIA ISOTROPIC MIXING OF C-13 MAGNETIZATION, A NEW 3-DIMENSIONAL APPROACH FOR ASSIGNING H-1 AND C-13 SPECTRA OF C-13-ENRICHED PROTEINS [J].
BAX, A ;
CLORE, GM ;
GRONENBORN, AM .
JOURNAL OF MAGNETIC RESONANCE, 1990, 88 (02) :425-431
[5]  
Blatch GL, 1999, BIOESSAYS, V21, P932, DOI 10.1002/(SICI)1521-1878(199911)21:11<932::AID-BIES5>3.3.CO
[6]  
2-E
[7]   The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast [J].
Bleazard, W ;
McCaffery, JM ;
King, EJ ;
Bale, S ;
Mozdy, A ;
Tieu, Q ;
Nunnari, J ;
Shaw, JM .
NATURE CELL BIOLOGY, 1999, 1 (05) :298-304
[8]   4-DIMENSIONAL C-13/C-13-EDITED NUCLEAR OVERHAUSER ENHANCEMENT SPECTROSCOPY OF A PROTEIN IN SOLUTION - APPLICATION TO INTERLEUKIN 1-BETA [J].
CLORE, GM ;
KAY, LE ;
BAX, A ;
GRONENBORN, AM .
BIOCHEMISTRY, 1991, 30 (01) :12-18
[9]   Protein backbone angle restraints from searching a database for chemical shift and sequence homology [J].
Cornilescu, G ;
Delaglio, F ;
Bax, A .
JOURNAL OF BIOMOLECULAR NMR, 1999, 13 (03) :289-302
[10]   The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions [J].
Das, AK ;
Cohen, PTW ;
Barford, D .
EMBO JOURNAL, 1998, 17 (05) :1192-1199