Mitotic Cdc6 stabilizes anaphase-promoting complex substrates by a partially Cdc28-independent mechanism, and this stabilization is suppressed by deletion of Cdc55

被引:21
作者
Boronat, Susanna [1 ]
Campbell, Judith L. [1 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
关键词
D O I
10.1128/MCB.01745-05
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ectopic expression of Cdc6p results in mitotic delay, and this has been attributed to Cdc6p-mediated inhibition of Cdc28 protein kinase and failure to activate the anaphase-promoting complex (APC). Here we show that endogenous Cdc6p delays a specific subset of mitotic events and that Cdc28 inhibition is not sufficient to account for it. The depletion of Cdc6p in G(2)/M cells reveals that Cdc6p is rate limiting for the degradation of the APC/Cdc20 substrates Pds1p and CIb2p. Conversely, the premature expression of Cdc6p delays the degradation of APC/Cdc20 substrates. Abolishing Cdc6p/Cdc28p interaction does not eliminate the Cdc6-dependent delay of these anaphase events. To identify additional Cdc6-mediated, APC-inhibitory mechanisms, we looked for mutants that reversed the mitotic delay. The deletion of SWE1, RAD24, MAD2, or BUB2 had no effect. However, disrupting CDC55, a PP2A regulatory subunit, suppressed the Cdc6p-dependent delay of Pds1 and Clb2 destruction. A specific role for CDC55 was supported by demonstrating that the lethality of Cdc6 ectopic expression in a cdc16-264 mutant is suppressed by the deletion of CDC55, that endogenous Cdc6p coimmunoprecipitates with the Cdc55 and Tpd3 subunits of MA, that Cdc6p/Cdc55p/Tpd3 interaction occurs only during mitosis, and that Cdc6 affects PP2A-Cdc55 activity during anaphase. This demonstrates that the levels and timing of accumulation of Cdc6p in mitosis are appropriate for mediating the modulation of APC/Cdc20.
引用
收藏
页码:1158 / 1171
页数:14
相关论文
共 76 条
[1]   REGULATION OF P34CDC28 TYROSINE PHOSPHORYLATION IS NOT REQUIRED FOR ENTRY INTO MITOSIS IN SACCHAROMYCES-CEREVISIAE [J].
AMON, A ;
SURANA, U ;
MUROFF, I ;
NASMYTH, K .
NATURE, 1992, 355 (6358) :368-371
[2]   Genetic and biochemical evaluation of the importance of Cdc6 in regulating mitotic exit [J].
Archambault, V ;
Li, CHX ;
Tackett, AJ ;
Wäsch, R ;
Chait, BT ;
Rout, MP ;
Cross, FR .
MOLECULAR BIOLOGY OF THE CELL, 2003, 14 (11) :4592-4604
[3]  
BASCO RD, 1995, MOL CELL BIOL, V15, P5030
[4]   PROPERTIES OF SACCHAROMYCES-CEREVISIAE WEE1 AND ITS DIFFERENTIAL REGULATION OF P34(CDC28) IN RESPONSE TO G(1) AND G(2) CYCLINS [J].
BOOHER, RN ;
DESHAIES, RJ ;
KIRSCHNER, MW .
EMBO JOURNAL, 1993, 12 (09) :3417-3426
[5]   DUAL FUNCTIONS OF CDC6 - A YEAST PROTEIN REQUIRED FOR DNA-REPLICATION ALSO INHIBITS NUCLEAR DIVISION [J].
BUENO, A ;
RUSSELL, P .
EMBO JOURNAL, 1992, 11 (06) :2167-2176
[6]   The stability of the Cdc6 protein is regulated by cyclin-dependent kinase/cyclin B complexes in Saccharomyces cerevisiae [J].
Calzada, A ;
Sánchez, M ;
Sánchez, E ;
Bueno, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (13) :9734-9741
[7]   Cdc6 cooperates with Sic1 and Hct1 to inactivate mitotic cyclin-dependent kinases [J].
Calzada, A ;
Sacristán, M ;
Sánchez, E ;
Bueno, A .
NATURE, 2001, 412 (6844) :355-358
[8]   Dephosphorylation of cyclin-dependent kinases by type 2C protein phosphatases [J].
Cheng, AY ;
Ross, KE ;
Kaldis, P ;
Solomon, MJ .
GENES & DEVELOPMENT, 1999, 13 (22) :2946-2957
[9]  
Clarke DJ, 2000, BIOESSAYS, V22, P351, DOI 10.1002/(SICI)1521-1878(200004)22:4<351::AID-BIES5>3.0.CO
[10]  
2-W