Stochastic gravitational wave background:: Upper limits in the 10-6 to 10-3 Hz band

被引:88
作者
Armstrong, JW
Iess, L
Tortora, P
Bertotti, B
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[2] Univ Roma La Sapienza, Dipartimento Ingn Aerospaziale & Astronaut, I-00184 Rome, Italy
[3] Univ Bologna, Fac Ingn 2, I-47100 Forli, Italy
[4] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy
关键词
cosmology : observations; gravitational waves; relativity;
D O I
10.1086/379505
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We have used precision Doppler tracking of the Cassini spacecraft during its 2001-2002 solar opposition to derive improved observational limits to an isotropic background of low-frequency gravitational waves. Using the Cassini multilink radio system and an advanced tropospheric calibration system, the effects of heretofore leading noises-plasma and tropospheric scintillation-were, respectively, removed and calibrated to levels lower than other noises. The resulting data were used to construct upper limits to the strength of an isotropic background in the 10(-6) to 10(-3) Hz band. Our results are summarized as limits on the strain spectrum S-h(f), the characteristic strain (h(c) = the square root of the product of the frequency and the one-sided spectrum of strain at that frequency), and the energy density (Omega = energy density in bandwidth equal to center frequency assuming a locally white energy density spectrum, divided by the critical density). Our best limits are S-h(f) < 6 x 10(-27) Hz(-1) at several frequencies in the millihertz band, h(c) < 2 x 10(-15) at about 0.3 mHz, and Omega < 0.025 x h(75)(-2), where h(75) is the Hubble constant in units of 75 km s(-1) Mpc(-1), at 1.2 x 10(-6) Hz. These are the best observational limits in the low-frequency band, the bound on Omega, for example, being about 3 orders of magnitude better than previous constraints from Doppler tracking.
引用
收藏
页码:806 / 813
页数:8
相关论文
共 38 条
[1]   The Cassini gravitational wave experiment [J].
Abbate, SF ;
Armstrong, JW ;
Asmar, SW ;
Barbinis, E ;
Bertotti, B ;
Fleischman, DU ;
Gatti, MS ;
Goltz, GL ;
Herrera, RG ;
Iess, L ;
Lee, KJ ;
Ray, TL ;
Tinto, M ;
Tortora, P ;
Wahlquist, HD .
GRAVITATIONAL-WAVE DETECTION, 2003, 4856 :90-97
[2]   PIONEER-10 SEARCH FOR GRAVITATIONAL-WAVES - LIMITS ON A POSSIBLE ISOTROPIC COSMIC BACKGROUND OF RADIATION IN THE MICROHERTZ REGION [J].
ANDERSON, JD ;
MASHHOON, B .
ASTROPHYSICAL JOURNAL, 1985, 290 (02) :445-448
[3]   Time-delay interferometry for space-based gravitational wave searches [J].
Armstrong, JW ;
Estabrook, FB ;
Tinto, M .
ASTROPHYSICAL JOURNAL, 1999, 527 (02) :814-826
[4]   CHARACTERIZATION OF FREQUENCY STABILITY [J].
BARNES, JA ;
CHI, AR ;
CUTLER, LS ;
HEALEY, DJ ;
LEESON, DB ;
MCGUNIGAL, TE ;
MULLEN, JA ;
SMITH, WL ;
SYDNOR, RL ;
VESSOT, RFC ;
WINKLER, GMR .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1971, IM20 (02) :105-+
[5]  
Bender P., 1998, MPQ233 MAX PLANCK I
[6]   Confusion noise level due to galactic and extragalactic binaries [J].
Bender, PL ;
Hils, D .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (06) :1439-1444
[7]   LIMITS FROM THE TIMING OF PULSARS ON THE COSMIC GRAVITATIONAL-WAVE BACKGROUND [J].
BERTOTTI, B ;
CARR, BJ ;
REES, MJ .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1983, 203 (03) :945-954
[8]   THE PROSPECTS OF DETECTING GRAVITATIONAL BACKGROUND-RADIATION BY DOPPLER TRACKING INTER-PLANETARY SPACECRAFT [J].
BERTOTTI, B ;
CARR, BJ .
ASTROPHYSICAL JOURNAL, 1980, 236 (03) :1000-1011
[9]   Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data [J].
Chen, G ;
Herring, TA .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1997, 102 (B9) :20489-20502
[10]   PULSAR TIMING MEASUREMENTS AND THE SEARCH FOR GRAVITATIONAL-WAVES [J].
DETWEILER, S .
ASTROPHYSICAL JOURNAL, 1979, 234 (03) :1100-1104