Control of electron transfer in neuronal NO synthase

被引:19
作者
Daff, S
Noble, MA
Craig, DH
Rivers, SL
Chapman, SK
Munro, AW
Fujiwara, S
Rozhkova, E
Sagami, I
Shimizu, T
机构
[1] Univ Edinburgh, Dept Chem, Edinburgh EH9 3JJ, Midlothian, Scotland
[2] Tohoku Univ, Inst Chem React Sci, Sendai, Miyagi 9808577, Japan
[3] Univ Strathclyde, Dept Pure & Appl Chem, Glasgow, Lanark, Scotland
关键词
autoinhibitory domain; cytochrome P450; nitric oxide; protein engineering;
D O I
10.1042/BST0290147
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The nitric oxide synthases (NOSs) are dimeric flavocytochromes consisting of an oxygenase domain with cytochrome P450-like Cys-ligated haem, coupled to a diflavin reductase domain, which is related to cytochrome P450 reductase. The NOSs catalyse the sequential mono-oxygenation of arginine to N-hydroxyarginine and then to citrulline and NO. The constitutive NOS isoforms (cNOSs) are regulated by calmodulin (CaM), which binds at elevated concentrations of free Ca2+, whereas the inducible isoform binds CaM irreversibly. One of the main structural differences between the constitutive and inducible isoforms is an insert of 40-50 amino acids in the FMN-binding domain of the cNOSs. Deletion of the insert in rat neuronal NOS (nNOS) led to a mutant enzyme which binds CaM at lower Ca2+ concentrations and which retains activity in the absence of CaM. In order to resolve the mechanism of action of CaM activation we determined reduction potentials for the FMN and FAD cofactors of rat nNOS in the presence and absence of CaM using a recombinant form of the reductase domain. The results indicate that CaM binding does not modulate the reduction potentials of the flavins, but appears to control electron transfer primarily via a large structural rearrangement, We also report the creation of chimaeric enzymes in which the reductase domains of nNOS and flavocytochrome P450 BM3 (Bacillus megaterium III) have been exchanged. Despite its very different flavin redox potentials, the BM3 reductase domain was able to support low levels of CaM-dependent NO synthesis, whereas the NOS reductase domain did not effectively substitute for that of cytochrome P450 BM3.
引用
收藏
页码:147 / 152
页数:6
相关论文
共 22 条
[1]  
ABUSOUD HM, 1994, J BIOL CHEM, V269, P32047
[2]   NITRIC-OXIDE - A PHYSIOLOGICAL MESSENGER MOLECULE [J].
BREDT, DS ;
SNYDER, SH .
ANNUAL REVIEW OF BIOCHEMISTRY, 1994, 63 :175-195
[3]   CLONED AND EXPRESSED NITRIC-OXIDE SYNTHASE STRUCTURALLY RESEMBLES CYTOCHROME-P-450 REDUCTASE [J].
BREDT, DS ;
HWANG, PM ;
GLATT, CE ;
LOWENSTEIN, C ;
REED, RR ;
SNYDER, SH .
NATURE, 1991, 351 (6329) :714-718
[4]   CALMODULIN IS A SUBUNIT OF NITRIC-OXIDE SYNTHASE FROM MACROPHAGES [J].
CHO, HJ ;
XIE, QW ;
CALAYCAY, J ;
MUMFORD, RA ;
SWIDEREK, KM ;
LEE, TD ;
NATHAN, C .
JOURNAL OF EXPERIMENTAL MEDICINE, 1992, 176 (02) :599-604
[5]   The 42-amino acid insert in the FMN domain of neuronal nitric-oxide synthase exerts control over Ca2+/calmodulin-dependent electron transfer [J].
Daff, S ;
Sagami, I ;
Shimizu, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (43) :30589-30595
[6]   Redox control of the catalytic cycle of flavocytochrome P-450 BM3 [J].
Daff, SN ;
Chapman, SK ;
Turner, KL ;
Holt, RA ;
Govindaraj, S ;
Poulos, TL ;
Munro, AW .
BIOCHEMISTRY, 1997, 36 (45) :13816-13823
[7]   Characterization of the reductase domain of rat neuronal nitric oxide synthase generated in the methylotrophic yeast Pichia pastoris - Calmodulin response is complete within the reductase domain itself [J].
Gachhui, R ;
Presta, A ;
Bentley, DF ;
AbuSoud, HM ;
McArthur, R ;
Brudvig, G ;
Ghosh, DK ;
Stuehr, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (34) :20594-20602
[8]   NITRIC OXIDES SYNTHASES - PROPERTIES AND CATALYTIC MECHANISM [J].
GRIFFITH, OW ;
STUEHR, DJ .
ANNUAL REVIEW OF PHYSIOLOGY, 1995, 57 :707-736
[9]   REDOX PROPERTIES OF REDUCED NICOTINAMIDE ADENINE-DINUCLEOTIDE PHOSPHATE-CYTOCHROME P-450 AND REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE-CYTOCHROME B5 REDUCTASES [J].
IYANAGI, T ;
MAKINO, N ;
MASON, HS .
BIOCHEMISTRY, 1974, 13 (08) :1701-1710
[10]   Calmodulin-dependent regulation of inducible and neuronal nitric-oxide synthase [J].
Lee, SJ ;
Stull, JT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (42) :27430-27437