Locally adaptive metrics for clustering high dimensional data

被引:161
作者
Domeniconi, Carlotta [1 ]
Gunopulos, Dimitrios
Ma, Sheng
Yan, Bojun
Al-Razgan, Muna
Papadopoulos, Dimitris
机构
[1] George Mason Univ, Fairfax, VA 22030 USA
[2] Univ Calif Riverside, Riverside, CA 92521 USA
[3] Vivido Media Inc, Beijing 100085, Peoples R China
基金
美国国家科学基金会;
关键词
subspace clustering; dimensionality reduction; local feature relevance; clustering ensembles; gene expression data; text data;
D O I
10.1007/s10618-006-0060-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering suffers from the curse of dimensionality, and similarity functions that use all input features with equal relevance may not be effective. We introduce an algorithm that discovers clusters in subspaces spanned by different combinations of dimensions via local weightings of features. This approach avoids the risk of loss of information encountered in global dimensionality reduction techniques, and does not assume any data distribution model. Our method associates to each cluster a weight vector, whose values capture the relevance of features within the corresponding cluster. We experimentally demonstrate the gain in perfomance our method achieves with respect to competitive methods, using both synthetic and real datasets. In particular, our results show the feasibility of the proposed technique to perform simultaneous clustering of genes and conditions in gene expression data, and clustering of very high-dimensional data such as text data.
引用
收藏
页码:63 / 97
页数:35
相关论文
共 38 条
  • [1] AGARWAL R, 1998, P ACM SIGMOD INT C M, P94
  • [2] Aggarwal CC, 1999, SIGMOD RECORD, VOL 28, NO 2 - JUNE 1999, P61, DOI 10.1145/304181.304188
  • [3] AGGARWAL CC, 2000, P ACM SIGMOD INT C M, P70, DOI DOI 10.1145/335191
  • [4] Al-Razgan M, 2006, SIAM PROC S, P258
  • [5] Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    Alizadeh, AA
    Eisen, MB
    Davis, RE
    Ma, C
    Lossos, IS
    Rosenwald, A
    Boldrick, JG
    Sabet, H
    Tran, T
    Yu, X
    Powell, JI
    Yang, LM
    Marti, GE
    Moore, T
    Hudson, J
    Lu, LS
    Lewis, DB
    Tibshirani, R
    Sherlock, G
    Chan, WC
    Greiner, TC
    Weisenburger, DD
    Armitage, JO
    Warnke, R
    Levy, R
    Wilson, W
    Grever, MR
    Byrd, JC
    Botstein, D
    Brown, PO
    Staudt, LM
    [J]. NATURE, 2000, 403 (6769) : 503 - 511
  • [6] [Anonymous], 2001, P ACM SIGMOD C MAN D
  • [7] [Anonymous], 1996, CRGTR961 U TOR DEP C
  • [8] Arabie P, 1996, OVERVIEW COMBINATORI, P5
  • [9] LOCAL LEARNING ALGORITHMS
    BOTTOU, L
    VAPNIK, V
    [J]. NEURAL COMPUTATION, 1992, 4 (06) : 888 - 900
  • [10] CHAKRABARTI K, 2000, P 26 INT C VER LARG, P89