Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models

被引:208
作者
Abonyi, J [1 ]
Babuska, R
Szeifert, F
机构
[1] Univ Veszprem, Dept Proc Engn, H-8201 Veszprem, Hungary
[2] Delft Univ Technol, Dept Informat Technol & Syst, Control Syst Engn Grp, NL-2600 GA Delft, Netherlands
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS | 2002年 / 32卷 / 05期
关键词
clustering methods; expectation maximization; fuzzy systems; modeling; regression; optimization;
D O I
10.1109/TSMCB.2002.1033180
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The construction of interpretable Takagi-Sugeno (TS) fuzzy models by means of clustering is addressed. First, it is shown how the antecedent fuzzy sets and the corresponding consequent parameters of the TS model can be derived from clusters obtained by the Gath-Geva (GG) algorithm. To preserve the partitioning of the antecedent space, linearly transformed input variables can be used in the model. This may, however, complicate the interpretation of the rules. To form an easily interpretable model that does not use the transformed input variables, a new clustering algorithm is proposed, based on the expectation-maximization (EM) identification of Gaussian mixture models. This new technique is applied to two well-known benchmark problems: the MPG (miles per gallon) prediction and a simulated second-order nonlinear process. The obtained results are compared with results from the literature.
引用
收藏
页码:612 / 621
页数:10
相关论文
共 25 条
[1]  
Abonyi J, 2000, NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, P835, DOI 10.1109/FUZZY.2000.839140
[2]  
Babu R., 1997, Fuzzy Model Identification, P53
[3]  
Babuska R., 1998, INT SER INTELL TECHN
[4]   OPTIMAL FUZZY PARTITIONS - HEURISTIC FOR ESTIMATING PARAMETERS IN A MIXTURE OF NORMAL DISTRIBUTIONS [J].
BEZDEK, JC ;
DUNN, JC .
IEEE TRANSACTIONS ON COMPUTERS, 1975, 24 (08) :835-838
[5]  
Bishop C. M., 1995, NEURAL NETWORKS PATT
[6]  
Draper N.R., 1994, Applied Regression Analysis, V3rd
[7]   UNSUPERVISED OPTIMAL FUZZY CLUSTERING [J].
GATH, I ;
GEVA, AB .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (07) :773-781
[8]   Cluster-weighted modelling for time-series analysis [J].
Gershenfeld, N ;
Schoner, B ;
Metois, E .
NATURE, 1999, 397 (6717) :329-332
[9]  
Gustafson D. E., 1979, Proceedings of the 1978 IEEE Conference on Decision and Control Including the 17th Symposium on Adaptive Processes, P761
[10]  
Hellendoorn H., 1997, FUZZY MODEL IDENTIFI