Peptide hydrophobicity controls the activity and selectivity of magainin 2 amide in interaction with membranes

被引:226
作者
Wieprecht, T
Dathe, M
Beyermann, M
Krause, E
Maloy, WL
MacDonald, DL
Bienert, M
机构
[1] FORSCHUNGSINST MOL PHARMAKOL, D-10315 BERLIN, GERMANY
[2] MAGAININ PHARMACEUT INC, PLYMOUTH MEETING, PA 19462 USA
关键词
D O I
10.1021/bi9619987
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The magainins are antibacterial peptides from the skin of Xenopus laevis. They show a broad range of activity against prokaryotic cells but lyse eukaryotic cells poorly. To elucidate the influence of peptide hydrophobicity on membrane activity and selectivity, we designed and synthesized analogs of magainin 2 amide with slightly varying hydrophobicities but retained hydrophobic moment, peptide charge, and angle subtended by the hydrophilic helix region. Circular dichroism investigations of the peptides revealed that all peptides investigated adopt an cl-helical conformation when bound to phospholipid vesicles. Dye-releasing experiments from vesicles of phosphatidylglycerol (PG) showed that the membrane-permeabilizing activity of the analogs is not influenced by peptide hydrophobicity. In contrast, the permeability-enhancing activity on vesicles bearing high amounts of phosphatidylcholine (PC) increases drastically with enhanced peptide hydrophobicity, resulting in a reduced selectivity of more hydrophobic analogs for negatively charged membranes. Likewise, the peptide affinity to PC-rich membranes increases in the order of hydrophobicity. Correlation of peptide binding and membrane permeabilization of PC/PG (3:1) vesicles revealed that the observed differences in peptide activity on membranes of low negative surface charge are mainly caused by the different binding affinities. The antibacterial and hemolytic activity of the peptides increases with enhanced hydrophobicity. A strong correlation was found between the hemolytic effect and the bilayer-permeabilizing activity against PC-rich vesicles. Whereas the antibacterial specificity of the more hydrophobic analogs is retained for Escherichia coli, the specificity for Pseudomonas aeruginosa decreases with increasing hydrophobicity.
引用
收藏
页码:6124 / 6132
页数:9
相关论文
共 41 条
[1]  
BAKER MA, 1993, CANCER RES, V53, P3052
[2]   STRUCTURE AND ORIENTATION OF THE ANTIBIOTIC PEPTIDE MAGAININ IN MEMBRANES BY SOLID-STATE NUCLEAR-MAGNETIC-RESONANCE SPECTROSCOPY [J].
BECHINGER, B ;
ZASLOFF, M ;
OPELLA, SJ .
PROTEIN SCIENCE, 1993, 2 (12) :2077-2084
[3]   AUGMENTATION OF THE ANTIBACTERIAL ACTIVITY OF MAGAININ BY POSITIVE-CHARGE CHAIN EXTENSION [J].
BESSALLE, R ;
HAAS, H ;
GORIA, A ;
SHALIT, I ;
FRIDKIN, M .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1992, 36 (02) :313-317
[4]  
Beyermann M., 1992, INNOVATIONS PERSPECT, P349
[5]   A RAPID AND SENSITIVE SUB-MICRO PHOSPHORUS DETERMINATION [J].
BOETTCHER, C ;
PRIES, C ;
VANGENT, CM .
ANALYTICA CHIMICA ACTA, 1961, 24 (02) :203-&
[6]   SYNTHETIC MAGAININ ANALOGS WITH IMPROVED ANTIMICROBIAL ACTIVITY [J].
CHEN, HC ;
BROWN, JH ;
MORELL, JL ;
HUANG, CM .
FEBS LETTERS, 1988, 236 (02) :462-466
[7]   DETERMINATION OF SECONDARY STRUCTURES OF PROTEINS BY CIRCULAR-DICHROISM AND OPTICAL ROTATORY DISPERSION [J].
CHEN, YH ;
YANG, JT ;
MARTINEZ, HM .
BIOCHEMISTRY, 1972, 11 (22) :4120-+
[8]   CHANNEL-FORMING PROPERTIES OF CECROPINS AND RELATED MODEL COMPOUNDS INCORPORATED INTO PLANAR LIPID-MEMBRANES [J].
CHRISTENSEN, B ;
FINK, J ;
MERRIFIELD, RB ;
MAUZERALL, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (14) :5072-5076
[9]   ANTIBIOTIC MAGAININS EXERT CYTOLYTIC ACTIVITY AGAINST TRANSFORMED-CELL LINES THROUGH CHANNEL FORMATION [J].
CRUCIANI, RA ;
BARKER, JL ;
ZASLOFF, M ;
CHEN, HC ;
COLAMONICI, O .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (09) :3792-3796
[10]   MAGAININ-2, A NATURAL ANTIBIOTIC FROM FROG-SKIN, FORMS ION CHANNELS IN LIPID BILAYER-MEMBRANES [J].
CRUCIANI, RA ;
BARKER, JL ;
DURELL, SR ;
RAGHUNATHAN, G ;
GUY, HR ;
ZASLOFF, M ;
STANLEY, EF .
EUROPEAN JOURNAL OF PHARMACOLOGY-MOLECULAR PHARMACOLOGY SECTION, 1992, 226 (04) :287-296