Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex

被引:196
作者
Lake, MW
Wuebbens, MM
Rajagopalan, KV
Schindelin, H [1 ]
机构
[1] SUNY Stony Brook, Dept Biochem, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Ctr Struct Biol, Stony Brook, NY 11794 USA
[3] Duke Univ, Med Ctr, Dept Biochem, Durham, NC 27710 USA
关键词
D O I
10.1038/35104586
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The activation of ubiquitin and related protein modifiers(1,2) is catalysed by members of the E1 enzyme family that use ATP for the covalent self-attachment of the modifiers to a conserved cysteine. The Escherichia coli proteins MoeB and MoaD are involved in molybdenum cofactor (Moco) biosynthesis, an evolutionarily conserved pathway(3,4). The MoeB- and E1-catalysed reactions are mechanistically similar, and despite a lack of sequence similarity, MoaD and ubiquitin display the same fold including a conserved carboxy-terminal Gly-Gly motif(5). Similar to the E1 enzymes, MoeB activates the C terminus of MoaD to form an acyl-adenylate. Subsequently, a sulphurtransferase converts the MoaD acyl-adenylate to a thiocarboxylate that acts as the sulphur donor during Moco biosynthesis(6,7). These findings suggest that ubiquitin and E1 are derived from two ancestral genes closely related to moaD and moeB(3,5). Here we present the crystal structures of the MoeB-MoaD complex in its apo, ATP-bound, and MoaD-adenylate forms, and highlight the functional similarities between the MoeB- and E1-substrate complexes. These structures provide a molecular framework for understanding the activation of ubiquitin, Rub, SUMO and the sulphur incorporation step during Moco and thiamine biosynthesis.
引用
收藏
页码:325 / 329
页数:5
相关论文
共 28 条
[1]   Methods used in the structure determination of bovine mitochondrial F-1 ATPase [J].
Abrahams, JP ;
Leslie, AGW .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1996, 52 :30-42
[2]   Glycyl-tRNA synthetase uses a negatively charged pit for specific recognition and activation of glycine [J].
Arnez, JG ;
Dock-Bregeon, AC ;
Moras, D .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 286 (05) :1449-1459
[3]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[4]   ALSCRIPT - A TOOL TO FORMAT MULTIPLE SEQUENCE ALIGNMENTS [J].
BARTON, GJ .
PROTEIN ENGINEERING, 1993, 6 (01) :37-40
[5]   SITE-DIRECTED MUTAGENESIS OF UBIQUITIN - DIFFERENTIAL ROLES FOR ARGININE IN THE INTERACTION WITH UBIQUITIN-ACTIVATING ENZYME [J].
BURCH, TJ ;
HAAS, AL .
BIOCHEMISTRY, 1994, 33 (23) :7300-7308
[6]   Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods [J].
delaFortelle, E ;
Bricogne, G .
MACROMOLECULAR CRYSTALLOGRAPHY, PT A, 1997, 276 :472-494
[7]  
HATFIELD PM, 1992, J BIOL CHEM, V267, P14799
[8]   Evolution and function of ubiquitin-like protein-conjugation systems [J].
Hochstrasser, M .
NATURE CELL BIOLOGY, 2000, 2 (08) :E153-E157
[9]   Biochemistry - All in the ubiquitin family [J].
Hochstrasser, M .
SCIENCE, 2000, 289 (5479) :563-564
[10]   INVITRO SYSTEM FOR MOLYBDOPTERIN BIOSYNTHESIS [J].
JOHNSON, ME ;
RAJAGOPALAN, KV .
JOURNAL OF BACTERIOLOGY, 1987, 169 (01) :110-116