Selection for thermodynamically stable DNA tetraloops using temperature gradient gel electrophoresis reveals four motifs: d(cGNNAg), d(cGNABg), d(cCNNGg), and d(gCNNGc)

被引:58
作者
Nakano, M [1 ]
Moody, EM [1 ]
Liang, J [1 ]
Bevilacqua, PC [1 ]
机构
[1] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
关键词
D O I
10.1021/bi026479k
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hairpins play important roles in the function of DNA. forming cruciforms and affecting processes such as replication and recombination. Temperature gradient gel electrophoresis (TGGE) and in vitro selection have been used to isolate thermodynamically stable DNA hairpins from a six-nucleotide random library. The TGGE-selection process was optimized such that known stable DNA tetraloops were recovered, and the selection appears to be exhaustive. In the selection, four families of exceptionally stable DNA loops were identified: d(cGNNAg), d(cGNABg), d(cCNNGg), and d(gCNNGc). (Lowercase denotes the closing base pair, N = A, C, G. or T. and B = C. G, or T.) It appears that the known stable d(cGNA) triloop motif can be embedded into a tetraloop,, with the extra nucleotide inserted into either the middle of the loop, d(cGNNAg), or at the 3'-end of the loop, d(cGNABg). For d(cGNNAg) and d(cGNABg), a CG closing base pair was strongly preferred over a GC, with DeltaDeltaGdegrees(37) approximate to 2 kcal/mol. Members of the two families, d(cCNNGg) and d(gCNNGc), are similar in stability. The loop sequences and closing base pairs identified for exceptionally stable DNA tetraloops show many similarities to those known for exceptionally stable RNA tetraloops. These data provide an expanded set of thermodynamic rules for the formation of tetraloops in DNA.
引用
收藏
页码:14281 / 14292
页数:12
相关论文
共 66 条
[1]   Remarkable morphological variability of a common RNA folding motif: The GNRA tetraloop-receptor interaction [J].
Abramovitz, DL ;
Pyle, AM .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 266 (03) :493-506
[2]   STRUCTURE OF THE P1 HELIX FROM GROUP-I SELF-SPLICING INTRONS [J].
ALLAIN, FHT ;
VARANI, G .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 250 (03) :333-353
[3]   Nearest-neighbor thermodynamics of internal A•C mismatches in DNA:: Sequence dependence and pH effects [J].
Allawi, HT ;
SantaLucia, J .
BIOCHEMISTRY, 1998, 37 (26) :9435-9444
[4]   Nearest neighbor thermodynamic parameters for internal G•A mismatches in DNA [J].
Allawi, HT ;
SantaLucia, J .
BIOCHEMISTRY, 1998, 37 (08) :2170-2179
[5]   Thermodynamics and NMR of internal GT mismatches in DNA [J].
Allawi, HT ;
SantaLucia, J .
BIOCHEMISTRY, 1997, 36 (34) :10581-10594
[6]   Thermodynamics of internal C•T mismatches in DNA [J].
Allawi, HT ;
Santalucia, J .
NUCLEIC ACIDS RESEARCH, 1998, 26 (11) :2694-2701
[7]   NMR solution structure of a DNA dodecamer containing single G•T mismatches [J].
Allawi, HT ;
SantaLucia, J .
NUCLEIC ACIDS RESEARCH, 1998, 26 (21) :4925-4934
[8]   A THERMODYNAMIC STUDY OF UNUSUALLY STABLE RNA AND DNA HAIRPINS [J].
ANTAO, VP ;
LAI, SY ;
TINOCO, I .
NUCLEIC ACIDS RESEARCH, 1991, 19 (21) :5901-5905
[9]   Thermodynamic analysis of an RNA combinatorial library contained in a short hairpin [J].
Bevilacqua, JM ;
Bevilacqua, PC .
BIOCHEMISTRY, 1998, 37 (45) :15877-15884
[10]  
Bevington R., 1969, DATA REDUCTION ERROR